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Abstract

We propose sharp testable implications and tests to jointly assess the random

assignment, exclusion, and monotonicity assumptions in judge leniency designs. Our

procedures accommodate various data scenarios in which the number of defendants

handled by a judge may be either small or large, and allow for discrete or continuous

instrumental variables. When the validity of the design is rejected, a variant of the

marginal treatment effect can be identified under weaker assumptions. We apply our

test to the Philadelphia court data studied by Stevenson (2018) and demonstrate

that it outperforms non-sharp joint tests by significant margins in simulation studies.
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1 Introduction

We propose a novel sharp test to assess the validity of the judge leniency design, which has

emerged as a prominent instrumental variable (IV) approach in recent years, particularly

in empirical research exploring causal effects within the criminal justice system. This

design has proven beneficial in investigating the impacts of various interactions with the

legal system, such as pretrial detentions and incarcerations, on subsequent outcomes, in-

cluding recidivism rates, conviction probabilities, and employment prospects. What sets

the judge leniency design apart is its distinctive feature of randomly assigning judges to

different cases, with each judge handling a significant number of cases while having dis-

cretion over the final decision. The random assignment of judges enhances the credibility

of this IV approach and has led to its increasing popularity among researchers (Kling,

2006; Di Tella and Schargrodsky, 2013; Aizer and Doyle Jr, 2015; Mueller-Smith, 2015).1

Importantly, the judge leniency design’s random assignment feature extends beyond the

context of criminal justice, making it a valuable methodology in diverse research contexts,

including medicine, patents and startups, bankruptcy protection, evictions, and access to

foster care (see Doyle Jr, Graves, Gruber, and Kleiner, 2015; Farre-Mensa, Hegde, and

Ljungqvist, 2020; Dobbie, Goldsmith-Pinkham, and Yang, 2017; Gross and Baron, 2022).2

However, in addition to the random assignment, an instrumental variable must adhere

to two additional crucial conditions: (i) an exclusion restriction, which means that judges’

actions should only influence the treatment and should not have any direct influence on

the defendant’s future outcomes; and (ii) a monotonicity restriction, which means that

judges should consistently exhibit more or less leniency. This means that if a defendant

was treated (detained) by one judge, she would always be treated (detained) by a less

lenient judge. Trial decisions (treatment) are often multidimensional, including incar-

ceration, fines, community service, sentence length, and others (Johnson, 2014). These

decisions impact future outcomes. Because different judges may have varying attitudes on

these decisions, the exclusion restriction can be violated if some of the decisions are un-

1Kling (2006) exploits randomized judge assignment along with judge propensities to instrument for
incarceration length, aiming to investigate the causal impact of incarceration on labor market outcomes.

2For example, Doyle Jr, Graves, Gruber, and Kleiner (2015) employs the judge leniency design in the
medical context to examine the impact of ambulance companies on patients in emergencies, relying on the
pseudo-random assignment of ambulance companies to patients. Similarly, Dobbie, Goldsmith-Pinkham,
and Yang (2017) uses the leniency of randomly assigned bankruptcy judges as an instrument to study
the implications of Chapter 13 bankruptcy protection on future financial events.
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observed or uncontrolled. Furthermore, Abrams, Bertrand, and Mullainathan (2012) and

Stevenson (2018) argue there is considerable heterogeneity in how judges rank defendants

when considering various types of offenses. If this heterogeneity is not observed, then it is

possible that judges exhibit varying levels of leniency under different circumstances, and

the monotonicity assumption would be violated. These observations align with Mogstad,

Torgovitsky, and Walters (2019), who demonstrate that, in general, monotonicity effec-

tively requires homogeneous choice behavior for economic agents when there are multiple

instruments. Therefore, offering a statistical test to evaluate the validity of the judge

leniency design becomes a highly relevant empirical question.

In this paper, we characterize the sharp testable implications of the judge leniency

design as a set of inequality restrictions on the distribution of the observed data. Our

result is novel and contributes to the testable implications derived in the seminal work of

Heckman and Vytlacil (2005) in two ways. First, our implications belong to a tractable

subset of the constraints of Heckman and Vytlacil (2005) and are easier to implement in

practice. Second, we establish the sharpness of our testable implication, that is, they pos-

sess the unique quality of exploiting all available information within the data distribution

that is useful to refute the validity of the judge leniency design.

Numerous efforts have been made to test the judge leniency design in the existing

literature. A common approach involves providing separate evidence for the validity of

the individual assumptions made in the judge leniency design. For instance, to assess the

random assignment of judges, Dobbie, Grönqvist, Niknami, Palme, and Priks (2018) ex-

amines whether a measure of judge stringency (the instrumental variable) correlates with

baseline cases and family characteristics of criminal defendants. Regarding the mono-

tonicity assumption, they test an implication that requires the first-stage estimates to be

non-negative for all subsamples. Bhuller, Dahl, Løken, and Mogstad (2018) and Norris,

Pecenco, and Weaver (2021) employ similar individual testing approaches. Assessing the

assumptions individually is effective in empirical scenarios where researchers know which

assumption to test and have prior knowledge that other assumptions hold. Our approach

adds to the existing body of knowledge by introducing a test that does not depend on

prior information. In fact, the three key assumptions may collectively impose certain con-

straints on the observable data-generating process (DGP), which could not be detected

by examining only the testable implications of each assumption in isolation.
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Unlike individually testing each assumption, Frandsen, Lefgren, and Leslie (2023)

proposes a joint test for all assumptions underlying the judge leniency design. Their

test leverages the property that, in the judge leniency design, the average outcome at

the judge level should exhibit a smooth relationship with the propensity score (or the

judge-level treatment probability). It ought to have a bounded slope, where the bounds

depend on the limits of the outcome variable’s support. Although Frandsen, Lefgren,

and Leslie (2023)’s testable implication has the desirable property that it assesses all

the assumptions simultaneously, we show there is still significant relevant information in

the data distribution essential for evaluating the judge leniency design’s validity, but not

used in Frandsen, Lefgren, and Leslie (2023)’s testable implication. This difference is also

demonstrated by numerical examples and empirical studies reported in Sections 2 and 4.

To the best of our knowledge, our test is the only sharp test available for assessing the

validity of the judge leniency design. In other words, our testable implications exhaust

all the information in the observed data distribution. As seen in previous methods, non-

sharp tests have practical virtue when there is no easily tractable characterization of the

sharp testable implications of a model’s assumptions. If a non-sharp rejects, it conveys

an informative result that the assumptions should be rejected. However, there are also

important trade-offs to consider. First, a non-sharp test can have no power against certain

violations since it does not consider all possible constraints on the data distribution.

Second, different non-sharp tests can lead to discordant empirical results and potentially

misleading interpretations of the estimand of interest (see Li, Kédagni, and Mourifié,

2024). For instance, two different non-sharp tests may produce conflicting results because

they consider different aspects of the observed data distribution. Our sharp test addresses

both issues as it is a consistent test built upon sharp testable implications and, therefore,

a useful complement to the existing literature.

We construct valid and consistent semi-nonparametric and semiparametric tests based

on these tractable testable implications. Our asymptotic tests support a diverse range of

data structures. For example, we can apply our tests to the empirical context in which

each judge handles a large number of defendants, and the number of judges can be either

large or small (as in our empirical application). As we will further elaborate in Section 3,

our asymptotic tests are also applicable when the number of defendants for each judge is

small, as long as the data regime permits a root-n estimation of the propensity score.
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We also provide an easy-to-compute finite sample test for cases involving a small num-

ber of judges and a small number of defendants per judge. To the best of our knowledge,

ours and the finite sample test of Frandsen, Lefgren, and Leslie (2023) are the only finite

sample specification tests in the judge leniency design literature. Like Frandsen, Lefgren,

and Leslie (2023), our finite sample test also focuses on binary outcomes. Unlike Frandsen,

Lefgren, and Leslie (2023)’s test, which ensures the finite sample validity by computing

a “least favorable p-value” via a high-dimensional nonlinear optimization routine, we use

Bonferroni correction. The computation for our test is very light and requires little more

than simulating Bernoulli random variables. Therefore, it serves as a useful addition to

the existing finite sample tests.

As a potential alternative to the existing non-sharp tests, one may consider testing the

validity of the judge leniency design employing some of the existing sharp tests developed

for the Local Average Treatment Effect (LATE) framework, i.e., Kitagawa (2015), Hu-

ber and Mellace (2015), and Mourifié and Wan (2017). However, it is worth noting that

these tests may over-reject since they are based on a priori direction in the monotonicity

assumption and are not directly applicable in the context of judge leniency design. For

instance, in the judge leniency design, the number of judges can be quite large, and in

some cases, it might even be infinite, especially when judges’ types are continuous. In

such scenarios, the number of potential directions to consider becomes large, possibly infi-

nite. Imposing a specific ex-ante direction in the judge leniency design is therefore overly

restrictive, and considering all possible directions might be impractical or impossible.

Furthermore, imposing an incorrect a priori direction bears an additional risk of model

misspecification. These issues highlight the need for a more flexible testing approach, like

the one proposed in this paper, which is free from making overly restrictive assumptions

on the direction of monotonicity.

While our test is primarily motivated by testing judge leniency designs, it can also

be applied to assess the identifying assumptions in a general Marginal Treatment Effect

framework with continuous or discrete instrument variables, which has been applied to

various empirical settings. See Carneiro, Heckman, and Vytlacil (2011); Kowalski (2016);

Brinch, Mogstad, and Wiswall (2017), among many others. In the context of judge

leniency designs, this also means that our test does not require observing a judge’s identity

and accommodates continuous judge types. Finally, motivated by Mogstad, Torgovitsky,
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andWalters (2019), we propose to relax monotonicity and exclusion assumptions to partial

monotonicity and partial exclusion, respectively, when our test rejects the null hypothesis.

We organize the rest of the paper as follows. Section 2 presents the analytical frame-

work and the sharp testable implications of the judge leniency design. Section 3 presents

the testing procedures. In Section 4, we show the results of the simulations and discuss our

empirical illustration. In Section 5, we explore approaches to salvage the judge leniency

design when its sharp testable implications are violated. The last section concludes the

paper, and the proofs are collected in the online supplementary materials.

2 Model and Sharp Testable Implications

We adopt the potential outcomes framework. Let the observed treatment indicator beD ∈
{0, 1}. For example, in the judge leniency design, the unit of observation is defendants.

Hence, D = 1 indicates that a defendant is incarcerated. Let Z ∈ Z ⊆ Rdz be the type

of the judge assigned to the defendant. Yd(z) ∈ Y ⊆ R denotes the potential outcome of

interest (e.g., recidivism) when the treatment and the judge’s type are externally set to

D = d, and Z = z, respectively. Similarly, Dz denotes the potential treatment when the

judge’s type is externally set to Z = z. Let Y = Y1(Z)D+ Y0(Z)(1−D) be the observed

outcome. For the moment, we omit observed defendant and case covariates X (such as

time and courtroom of the trial) for ease of notation. The identification analysis in this

section can be extended by conditioning on X. We will also discuss the implementation

of our test in the presence of X in Section 3.2.

In our setting, Z can be multidimensional, continuous, discrete, or a combination of

both. For example, if there is a group of judges J , and if their identities are observed, then

Z ∈ J can be chosen as the identity of the judge assigned to the defendant. This is the

instrumental variable that Frandsen, Lefgren, and Leslie (2023, FLL hereafter) consider.

On the other hand, we allow scenarios in which the judge’s identity is unobserved but

with observed characteristics. In this case, Z may contain a set of continuous or discrete

variables, such as the judge’s experience, gender, and race.

The literature mainly relies on the following assumptions to evaluate the causal effects

of treatment D on outcome Y .

Assumption 2.1 (Random assignment of judges) Z ⊥ (Y0(z), Y1(z), Dz; z ∈ Z).
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Assumption 2.2 (Exclusion restriction) There is no direct effect of judges’ type on

the potential outcomes. For d ∈ {0, 1}, Yd(z) = Yd for all z ∈ Z.

Assumption 2.3 (Monotonicity) For any pair (z, z′) ∈ Z ×Z either Dz ≥ Dz′ for all

defendants or Dz ≤ Dz′ for all defendants.

A particular feature of the judge leniency design is that judges are usually randomly

assigned to different cases, making the random assignment assumption likely to hold in

practice. However, Assumptions 2.2 and 2.3 are usually less credible. Assumption 2.2

means the effect of judges on the potential outcomes must necessarily transit through

their effect on treatment assignment. Assumption 2.3 requires that any defendants treated

(incarcerated) by a more lenient judge be also treated if assigned to a less lenient one.

Heckman and Vytlacil (2005) refers to the monotonicity assumption as a uniformity con-

dition since it restricts that the treatment on all the defendants must vary in a uniform

direction when externally assigned to another judge. Vytlacil (2002) provides an equiva-

lent characterization of the monotonicity assumption, which can be stated as follows:

Assumption 2.4 (Single Threshold-Crossing: STC) The judge treatment assignment

mechanism is governed by the following threshold crossing model D = 1{ν(Z) ≥ U} for

some measurable and non-trivial function ν, where the distribution of U is absolutely

continuous.

Under Assumptions 2.1 and 2.4, we can rewrite the threshold crossing model without

loss of generality as follows:

D = 1 {FU(ν(Z)) ≥ FU(U)} ≡ 1 {P (Z) ≥ V } ,

where FU(·) is the distribution function of U , P (·) ≡ FU(ν(·)) is identified from the

observed variables (D,Z) by P (z) = P(D = 1|Z = z), and V ≡ FU(U) ∼ Uniform[0, 1].

Hereafter, we will write P (Z) as P when it causes no confusion. Let P ⊆ [0, 1] denote

the support of P (Z). It is worth noting that the STC does not impose a priori direction

in z in the monotonicity condition since Assumption 2.4 is equivalent to Assumption 2.3

(Vytlacil, 2002). Under Assumptions 2.1, 2.2 and 2.4, the judge leniency design model
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can be equivalently written as:Y = Y1D + Y0(1−D),

D = 1 {P (Z) ≥ V } .
(2.1)

Assumptions 2.1, 2.2 and 2.4 (equivalently Assumptions 2.1 to 2.3) impose some re-

strictions on the joint distribution of the observed variables (Y,D, P (Z)), which we will

characterize in Theorem 1. But before stating the theorem, we will discuss the intuition

of the testable implications. Let g : Y → R+ be a nonnegative real integrable function

such that E|g(Yd)| < ∞. Taking d = 0 as an illustration. For any pair (p, p′) ∈ P × P
such that p ≤ p′, we have:

E[g(Y )(1−D)|P = p] = E[g(Y0)1{V ≥ P}|P = p] = E[g(Y0)1{V ≥ p}]

≥ E[g(Y0)1{V ≥ p′}] = E[g(Y0)1{V ≥ P}|P = p′] = E[g(Y )(1−D)|P = p′].

The first and fourth equalities hold by Assumption 2.4 (STC) and Assumption 2.2 (ex-

clusion); the second and third equalities hold because of Assumption 2.1 (random assign-

ment), and the inequality holds because p ≤ p′. Intuitively, under the assumptions of the

judge leniency design, if a defendant is released by judge p′, then he/she would necessarily

be released by judge p since judge p is more lenient than judge p′. On the other hand,

there can exist a set of defendants who were released by a type p judge, but not by a

type p′ judge: a group of “compliers”. Because g(Y0) is nonnegative, the average g(Y0)

for this group of compliers is also nonnegative, delivering the inequality we see from the

displayed equation above. The discussion is formalized in the following theorem.

Theorem 1 (Sharp characterization of the Judges’ IV design assumptions) Let

the collection of variables (Y,D, Y1, Y0, P (Z)) define a potential outcome model Y =

Y1D + Y0(1−D).

(i) If Assumptions 2.1, 2.2 and 2.4 (equivalently Assumptions 2.1 to 2.3) hold, then

for all y, y′ ∈ Y, P(y < Y ≤ y′, D = 1|P = p) and −P(y < Y ≤ y′, D = 0|P = p) are

non-decreasing in p for all p ∈ P.

(ii) If for all y, y′ ∈ Y, P(y < Y ≤ y′, D = 1|P = p) and −P(y < Y ≤ y′, D = 0|P = p)

are non-decreasing in p for all p ∈ P, there exists a joint distribution of (Ṽ , Ỹ1, Ỹ0, P (Z))
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such that Assumptions 2.1, 2.2 and 2.4 hold, and (Ỹ , D̃, P (Z)) has the same distribution

as (Y,D, P (Z)).

The proof of Theorem 1 is collected in Appendix B.1. The testable implications

in Theorem 1(i) are a subset of the implications previously derived in Heckman and

Vytlacil (2005, Appendix A), who show for any non-negative integrable function, i.e.

g(·) : Y → R+, E[g(Y )D|P = p] and −E[g(Y )(1 − D)|P = p] are non-decreasing in p

under Assumptions 2.1, 2.2 and 2.4. The contribution of Theorem 1-(i) is that it shows

we do not need to visit every single non-negative measurable function. It is sufficient

to restrict our attention to a tractable subclass of these functions to screen all possible

observable violations. This tractable characterization provides a basis for constructing a

formal statistical test to verify the validity of the assumptions.3

The second part of Theorem 1 is new, and it shows that the testable implications in

Theorem 1(i) are the most informative way to detect all observable violations of the ran-

dom assignment, the exclusion restriction, and the monotonicity assumption (without an

ex-ante imposed direction). These testable implications cannot be strengthened without

making additional assumptions. Various tests or testable implications are used in the lit-

erature to screen violations of the judge leniency design assumptions; for instance, Dobbie,

Grönqvist, Niknami, Palme, and Priks (2018); Bhuller, Dahl, Løken, and Mogstad (2018);

Norris, Pecenco, and Weaver (2021); Frandsen, Lefgren, and Leslie (2023). However, to

the best of our knowledge, only Theorem 1 provides sharp testable implications without

imposing an a priori direction in the monotonicity assumption.

Tests based on sharp testable implications have empirical virtue. In practice, one

may use tests developed from non-sharp testable implications for the sake of traceability.

However, as recently discussed in Li, Kédagni, and Mourifié (2024), non-sharp tests can

lead to discordant empirical results and misleading interpretations of the estimand of

interest. It is possible that for the same data, two different non-sharp tests may generate

contradictory results, as they may use different sets of information from the same observed

DGP to screen violations of the model assumptions. Thus, the conclusion may largely

depend on which test the empirical researcher implements.

3We note that use the the half-interval class g(Y ) = 1{Y ≤ y}, y ∈ Y will result in loss of power. To
see this, suppose the support is finite, that is, Y = {y1, y2, · · · , yK}, then it is without loss of information
to consider the class of singletons: g(Y ) = 1{Y = yk}, k = 1, 2, · · · ,K. However, if one considers
g(Y ) = 1{Y ≤ yk}, then it is possible that both P(Y ≤ y1, D = 1|P = p) and P(Y ≤ y2, D = 1|P = p)
are non-decreasing function, but P(Y = y2, D = 1|P = p) is not.
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Moreover, after implementing a specification test and obtaining a non-rejection result,

one often proceeds and provides a causal interpretation of the estimand. For example, in

judge leniency designs, the 2SLS or Local IV (LIV) estimand is interpreted as the LATE

or MTE, respectively. However, since a non-sharp test only uses part of the observable

information in the data and fails to reject the model when it is misspecified, we must be

cautious about interpreting the 2SLS or the LIV estimand as identifying the LATE/MTE

solely based on the result of a non-sharp test. Therefore, using a sharp test must be viewed

not only as a theoretical exercise, but also as having an important empirical relevance.

A sharp test provides the most informative way to detect all observable violations of a

given model’s assumptions and is more robust to possible misleading interpretations and

discordant results.

2.1 Connection to existing tests

2.1.1 Kitagawa (2015), and Mourifié and Wan (2017) testable implications

Inspired by Heckman and Vytlacil (2005, Appendix A), Kitagawa (2015) and Mourifié

and Wan (2017) derive a set of sharp testable implications assuming an a priori direction

in the monotonicity assumption. When judges’ types are binary, i.e. Z ∈ {0, 1}, there
are only two potential directions, so it is not restrictive to assume the direction of the

monotonicity. However, when the cardinality of the judges’ types is large (or even infinite

when the judges’ types are continuous), imposing a specific ex-ante direction is extremely

restrictive because the number of possible directions to consider can be rather large (or

even infinite). One could implement their test by visiting all the possible directions, but

this can be cumbersome or even computationally impossible if Z takes many values.

One significant difference between the testable implication of Kitagawa (2015) and

Mourifié and Wan (2017) and ours is we do not assume a prior direction. To illustrate

this point, suppose Z = {z1, ..., zK} and suppose we assume one of the K! potential

directions as:

DzK ≥ DzK−1
≥ ... ≥ Dz1

meaning that type zK judge is less lenient than type zK−1 judge, which, in turn, is less

lenient than zK−2, zK−3, · · · , z1 judge. Given this imposed ordering, Assumptions 2.1
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to 2.3 imply the following testable implications studied in Sun (2023):

P(y < Y ≤ y′, D = 1|Z = zk) ≤ P(y < Y ≤ y′, D = 1|Z = zk+1),

−P(y < Y ≤ y′, D = 0|Z = zk) ≤ −P(y < Y ≤ y′, D = 0|Z = zk+1),

for all k ∈ {1, ..., K − 1} and y, y′ ∈ Y .

A key point to note is that the above implications restrict FY,D|Z(y, d|z) while the testable
implications in Theorem 1(i) instead restrict FY,D|P (y, d|p). In the first case, the induced

direction of inequalities is with respect to the observed judge type Z, while in our case,

the inequalities are with respect to the propensity score P , which is obtained without

imposing a prior direction. Also, noteworthy is that if one takes y = −∞ and y′ = ∞,

the testable implications in Theorem 1(i) no longer have any empirical content. But, the

testable implications with an ex-ante monotonicity direction still restrict the propensity

scores and the judges’ types, i.e., P , and Z, such that

P(D = 1|Z = zk) ≤ P(D = 1|Z = zk+1), for all k ∈ {1, ..., K − 1}.

Therefore, implementing the testing approaches of Kitagawa (2015) and Mourifié and

Wan (2017) may reject the judge leniency design assumptions even if Assumptions 2.1

to 2.3 hold, but just the ex-ante imposed direction of monotonicity is wrong.

2.1.2 Frandsen, Lefgren, and Leslie (2023)’s test

FLL proposes a set of testable implications for Assumptions 2.1 to 2.3. Their testable

implication has sound features of not relying on the ex-ante specified direction of mono-

tonicity and assessing all the assumptions jointly. Their testable implication, however, is

not sharp and can fail to screen some non-negligible observable violations of the judge

leniency design. To see this, consider any integrable function g(·) : Y → R, and let

p ̸= p′ ∈ P . Under Assumptions 2.1 to 2.3, we can derive the following equality:

W (g(Y ), p, p′) ≡ E[g(Y )|P = p′]− E[g(Y )|P = p]

p′ − p

= E[g(Y1)− g(Y0)|p < V ≤ p′]1{p < p′}+ E[g(Y1)− g(Y0)|p′ < V ≤ p]1{p < p′}.
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If we denote by Lg and Ug the known lower bound and upper bound of the support of

g(Y ), the latter equality implies:

Lg − Ug ≤ W (g(Y ), p, p′) ≤ Ug − Lg, (2.2)

where the inequality in (2.2) is the main testable implication used by FLL (see Theorem

1 and Equation (2) therein) to implement their test. However, under Assumptions 2.1

to 2.3, we should also have:

W (g(Y D), p, p′) = E[g(Y1)|p < V ≤ p′]1{p < p′}+ E[g(Y1)|p′ < V ≤ p]1{p > p′},

W (g(Y (1−D)), p, p′) = −E[g(Y0)|p < V ≤ p′]1{p < p′} − E[g(Y0)|p′ < V ≤ p]1{p > p′},

where those two latter equalities lead to the following observable restrictions:

Lg ≤ W (g(Y D), p, p′) ≤ Ug, (2.3)

−Ug ≤ W (g(Y (1−D)), p, p′) ≤ −Lg, (2.4)

One can easily observe that the testable restrictions in (2.3) and (2.4) could be violated,

whereas the restriction used by FLL, i.e. inequality (2.2) still holds. Hence, implementing

FLL’s statistical testing procedure based on inequalities (2.3) or (2.4) could provide a

different result compared to their test based on inequality (2.2) alone. These discordant

implications confirm the concern about developing a statistical test based on non-sharp

restrictions. Example 2.1 provides a concrete numerical example.

Example 2.1 Consider the potential outcome model:Y = Y1D + Y0(1−D),

D = 1 {P ≥ V } .

Suppose V is independent of (Y1, Y0, P ). However, (Y1, Y0) and P are dependent:Y1|P = p̃ ∼ degenerate at 1 , if p̃ < 1
2

Y1|P = p̃ ∼ Bernoulli(p̃), if p̃ ≥ 1
2
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Y0|P = p̃ ∼ degenerate at 0 , if p̃ < 1
2

Y0|P = p̃ ∼ Bernoulli(p̃), if p̃ ≥ 1
2

Therefore, the randomization assumption is violated, but the monotonicity and exclusion

conditions are met. In this case, Yd is binary and Ug = 1 and Lg = 0, so we also take g(·)
to be the identity function without loss of generality.

For this DGP, we can show that for any p′ ∈ (0, 1) and p ∈ (0, 1), W (g(Y ), p, p′) = 1.

Hence, FLL’s testable implication (inequality 2.2 above) always holds and has no power

to detect the violation. There is missing information. For example, when p′ > p > 1
2
, we

can verify that W (g(Y D), p, p′) = p′ + p > 1 ≡ Ug. Therefore, condition (2.3) is violated.

Please see derivation details in Appendix B.4.

On the other hand, our testable implication can capture such a violation. To see this,

note

E[Y D|P = p] = E[Y1|P = p]p =

p if p < 1
2
,

p2 if p ≥ 1
2
.

.

It is apparent that E[Y D|P = p] is not a monotone function of p, and therefore violates

our testable implication. □□□

The intuition behind Example 2.1 is not pathological and is reflected in the derivation

in Appendix B.4. Because E[Y |P = p] = E[Y1D|P = p] + E[Y0(1 − D)|P = p], it is

possible the violations on the E[Y1D|P = p] and E[Y0(1 − D)|P = p] “cancel” out. As

a consequence, the quantity E[Y |P = p] provides no power to detect violations in these

cases.

Another evident reason why FLL’s implications cannot exhaust all violations of the

judge leniency design is that they only focus on g(Y ) = Y , whereas the inequality in (2.2)

should hold for any integrable function g and for any pair p ̸= p′ ∈ P . g(Y ) = Y is not a

sufficient class of functions to screen all violations of the model.

Finally, we note our testable implications in Theorem 1 do not rely on the known

support of g(Y ), whereas to test inequality (2.2), one needs to know the bounds of the

support (Ug, Lg). If the support of g(Y ) is unbounded, i.e., Ug = +∞ and Lg = −∞,

then the testable implication in (2.2) holds trivially and FLL’s test does not have any

power in detecting violations to the identification assumptions.

In the next section, we propose a testing procedure based on the sharp testable impli-
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cations of Theorem 1. We will show that in large samples, our test is consistent against all

the violations of our testable implication and is, therefore, more powerful asymptotically

than the existing ones.

3 Testing Procedures

In this section, we construct tests based on Theorem 1. For the defendant i ∈ {1, 2, · · · , n},
researchers observed a vector (Yi, Di, Zi, Xi), where Yi, Di, Zi, and Xi represent his/her

observed outcome, observed treatment status, the vector of characteristics of the judge

that i was assigned to, and the vector of additional control variables, respectively.

We first present our baseline semi-nonparametric test in Section 3.1 without the pres-

ence of control variables Xi. For this test, we make no functional form or distributional

assumptions about potential outcomes. We do need to estimate the propensity score

P (z) ≡ P(Di = 1|Zi = z) first, for which our procedure can accommodate different data

scenarios. If Zi contains continuous variables, we follow the common practice in the lit-

erature to employ a parametric model so that P (z) = P (z, θ0) for all z ∈ Z and for a

finite-dimensional parameter vector θ0 ∈ Θ. Popular choices include the Probit or Logit

model with a linear index z′θ0 (see, for instance, Carneiro, Heckman, and Vytlacil, 2011;

Kowalski, 2016, among many others).4 When Zi only contains discrete variables, such as

judge’s gender, we can estimate P(Di = 1|Zi = z) by the sample averages of D condition-

ing on each possible value of z ∈ Z. In this case, our test is indeed nonparametric.

We should emphasize that, in both cases above, we do not require any knowledge of

the identity of judges, nor do we need the number of defendants handled by each judge to

diverge to infinity. For example, when Z is gender, we only need the number of defendants

for each judge’s gender to go to infinity. This can happen when the number of judges is

large, but each judge handles a finite number (or even one) of defendants. Therefore, our

test can also be applied to other empirical contexts than the judge leniency design. There

is another scenario in which Zi is the judge’s identity. Suppose the number of defendants

handled by each judge is large, as in our empirical application. In this case, we can also

4When Z is continuous, the rejection result of our semi-nonparametric test can be interpreted as reject-
ing the joint assumption of the judge leniency design and the parametric form imposed on the propensity
score. In our simulation studies, we always keep the propensity score correctly specified. In these studies,
therefore, the rejection shows the power of our test to reject false judge leniency assumptions.
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consistently estimate judge j’s propensity score P(D = 1|Zi = j) by the sample frequency

estimator for each judge j, regardless of whether the number of judges is small or large.

In practice, the number of defendants that a judge handles can be small. In this case,

one can not estimate P(D = 1|Zi = j) consistently without additional assumptions and

conventional inference methods can be invalid. This phenomenon has received attention

from the literature, see discussions in Jochmans (2023), Ren (2024), Sithole (2024), and

Yap (2024). These papers, however, focus on inference on the parameters instead of testing

model specification. To account for data scenarios with small numbers of defendants per

judge, we design a test that does not require a consistent estimator for the propensity

score and controls the size at any sample sizes for the case of a binary outcome. To the

best of our knowledge, this test and FLL’s finite sample test are the only ones for testing

judge leniency design specification with finite samples, and both focus on binary outcome

variables. Our test uses upper bounds of the null distribution to calculate the critical

values, and hence is very easy to implement. It only requires simulating Bernoulli random

variables, and no nonlinear optimization is involved. For the purpose of exposition, we

collect the finite sample test in Appendix C and focus on the cases in which the propensity

score can be consistently estimated in this section.

In practice, researchers may observe a set of defendant and case covariates X and

assume the randomization and monotonicity hold conditioning on X (see Assumptions 3.1

and 3.2 below). In the presence of covariates, researchers can use the semi-nonparametric

test introduced in Section 3.1 when the dimension of covariates is small or the number of

support points in X is not large; please see Remark 3.1 below. In other cases, the semi-

nonparametric test may encounter challenges associated with the curse of dimensionality.

To address this concern, we introduce an alternative semiparametric test designed to

accommodate situations with a large (but fixed) number of covariates in Section 3.2.

3.1 A Semi-nonparametric test

For the convenience of the exposition, we restate the testable implications as the null

hypothesis H0. That is, for all p1 ≥ p2 with p1, p2 ∈ P and all y, y′ ∈ Y ,

P(y < Y ≤ y′, D = 1|P = p1) ≥ P(y < Y ≤ y′, D = 1|P = p2), (3.1)

P(y < Y ≤ y′, D = 0|P = p1) ≤ P(y < Y ≤ y′, D = 0|P = p2). (3.2)
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The alternative hypothesis H1 is then inequality (3.1) or (3.2) fails to hold for some

(p1, p2) and (y, y′). Without loss of generality, we assume the support of Y is [0, 1].5

Testing inequalities (3.1) and (3.2) involves two features; first, it is a set of inequality

restrictions defined on conditional moments where the conditioning variable is possibly

continuous. We deal with the first difficulty by employing the method of Hsu, Liu, and Shi

(2019) to transform them into an equivalent set of restrictions on unconditional moments.

The second feature is that the conditioning variable P is not directly observed from the

data. We derive the new influence functions and show that the first-stage estimation error

is properly accounted for.

To be more specific, we define a collection of functions {νd(ℓ) : ℓ ∈ L, d = 0, 1} as

follows:

ν1(ℓ) ≡ E[D1{y ≤ Y ≤ y + ry}1{p2 ≤ P ≤ p2 + rp}] · E[1{p1 ≤ P ≤ p1 + rp}]

− E[D1{y ≤ Y ≤ y + ry}1{p1 ≤ P ≤ p1 + rp}] · E[{p2 ≤ P ≤ p2 + rp}], (3.3)

and

ν0(ℓ) ≡ E[(D − 1)1{y ≤ Y ≤ y + ry}1{p2 ≤ P ≤ p2 + rp}] · E[1{p1 ≤ P ≤ p1 + rp}]

− E[(D − 1)1{y ≤ Y ≤ y + ry}1{p1 ≤ P ≤ p1 + rp}] · E[1{p2 ≤ P ≤ p2 + rp}], (3.4)

where the index ℓ ∈ L is defined as

ℓ = (ℓ′y, ℓ
′
p)

′, ℓy = (y, ry)
′, ℓp = (p1, p2, rp)

′, L = LY ⊗ LP ,

LY =
{
(y, ry) : ry = q−1

y , qy · y ∈ {0, 1, 2, · · · , (qy − 1)} for qy = 1, 2, · · · ,
}
.

LP =
{
(p1, p2, rp) : rp = q−1

p , qp · (p1, p2) ∈ {0, 1, 2, · · · , (qp − 1)}2, p1 ≥ p2 for qp = 1, 2, · · · ,
}
.

Then, following the same calculation as in Hsu, Liu, and Shi (2019), we can formulate

the null hypothesis in inequalities (3.1) and (3.2) as the following:

H0 : νd(ℓ) ≤ 0, for all ℓ ∈ L and d = 0, 1, (3.5)

5We can always apply a transformation to ensure the support of Y is [0, 1]. If Y has a finite support
[a, b], we can apply an affine transformation Ỹ = (Y − a)/(b − a). If Y ’s support is the whole real line,

we can apply standard normal CDF after rescaling and re-centering: Ỹ = Φ
(

Y−Ȳ
ˆstd(Y )

)
, where Ȳ is the

sample average and ˆstd(Y ) is the sample standard deviation.
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against the alternative hypothesis H1 that inequality (3.5) fails to hold for some ℓ ∈ L
and for d = 0 or d = 1. Consequently, testing the original sharp implication in Theorem 1

is equivalent to testing the set of inequalities indexed by ℓ ∈ L, a class of cubes. There

is no loss of information for such transformation (see Andrews and Shi, 2013). Under

H0, we expect to see T ≡
∑

d=0,1

∑
ℓ∈L max{νd(ℓ), 0}2Ω(ℓ) = 0, where Ω(·) is a positive

weighting function. On the other hand, T > 0 under H1. Our test statistics are based on

the appropriately rescaled and standardized sample analog of T .

In the expression of νd(ℓ), the propensity score P (Zi) is unknown, but can be replaced

by its root-n consistent estimate P̂i. When we estimate the propensity score by a para-

metric model, we denote it as P̂i ≡ P (Zi, θ̂), where θ̂ is the MLE. When Zi is the judge’s

identity and the number of defendants for each judge is large, we simply use the frequency

estimator P̂i =
∑n

j=1 Dj1{Zj=Zi}∑n
j=1 1{Zj=Zi} . Algorithm 3.1 below summarizes the semi-nonparametric

test’s implementation procedure. Please see Appendix A for detailed equations and ex-

pressions.

Algorithm 3.1 This algorithm shows the steps for constructing the test statistics and

critical value.

1. Specify integers QY and QP , and create a coarser version LQ of L set by limiting

qy = 1, 2, · · · , QY and qp = 1, 2, · · · , QP .

2. Compute the estimator for the propensity score P̂i, as detailed in Appendix A.

3. For each ℓ ∈ LQ, construct estimates ν̂1(ℓ) and ν̂0(ℓ) as sample analogs of Equa-

tions (3.3) and (3.4), as detailed in Equations (A.5) and (A.6).

4. Choose a positive integer B (as the number of bootstrap iterations), and for each

b = 1, 2, · · · , B,

(a) DrawW b
1 ,W

b
2 , · · · ,W b

n as a sequence of independent random variables with both

mean and variance equal to one and are independent of the original sample.

(b) Estimate propensity score for each bootstrap iteration P̂ b
i , defined in Equa-

tion (A.9).

(c) Obtain ν̂bd(ℓ), d = 0, 1, for each bootstrap iteration using Equations (A.10)

and (A.11).
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5. Compute the normalization factor, denoted by σ̂d(ℓ), as:

σ̂2
d(ℓ) =

n

B

B∑
b=1

(
ν̂bd(ℓ)− ν̂bd(ℓ)

)2
, where ν̂

b

d(ℓ) =
1

B

B∑
b=1

ν̂bd(ℓ). (3.6)

Choose a constant ϵ > 0, and let σ̂2
d,ϵ(ℓ) = max{σ̂2

d(ℓ), ϵ}.

6. Choose the weighting function Ω over L such that Ω(ℓ) > 0 for all ℓ ∈ L and∑
ℓ∈L Ω(ℓ) <∞. Calculate the test statistics as

T̂n =
∑
d=0,1

∑
ℓ∈LQ

max
{√

n
ν̂d(ℓ)

σ̂d,ϵ(ℓ)
, 0
}2

Ω(ℓ).6 (3.7)

7. Let an and Bn be positive deterministic sequences.7 Calculate the generalized mo-

ment selection (GMS) terms as

ψ̂d(ℓ) = −Bn · 1
{√

nν̂d(ℓ)

σ̂d,ϵ(ℓ)
< −an

}
.

8. For b = 1, 2, · · · , B, calculate the quantity

T̂ b =
∑

d∈{0,1},ℓ∈LQ

max

{
Φ̂b

d(ℓ)

σ̂d,ϵ(ℓ)
+ ψ̂d(ℓ)

}2

Ω(ℓ),

where

Φb
d(ℓ) =

√
n
(
ν̂bd(ℓ)− ν̂d(ℓ)

)
. (3.8)

9. Let ĉ = q̂(1− α + η) + η, where q̂(τ) is the τ -th empirical quantile of
{
T̂ b

}B

b=1
and

η is a small positive constant, e.g. η = 10−6.8

10. Define the test to be ϕn = 1{T̂ ≥ ĉ}. That is, we reject the null hypothesis if T̂ ≥ ĉ.

6To be specific, for qy and qp, we suggest to set Ω(ℓ) = q−3
y · q−2

p

qp(qp−1) .
7See Andrews and Shi (2013) for the rate condition of an and Bn and they suggest to set an =

√
0.3 lnn

and Bn =
√
0.4 lnn/ln lnn. Here, we propose an = 0.15 lnn and Bn = 0.85 lnn/ln lnn, as in Hsu, Liu,

and Shi (2019).
8η is the infinitesimal constant which is introduced mainly for the sake of proof; see for instance

Andrews and Shi (2013). Our simulation exercises set it to 10−6.
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Theorem 2 shows that the test ϕn has its size controlled asymptotically and is consis-

tent. The proof for Theorem 2 is collected in Appendix B.2 of the online supplementary

material. We also list all the technical assumptions, such as conditions that ensure the

first-stage estimator converges at a sufficiently fast rate, in that section for the sake of

exposition.

Theorem 2 Suppose Assumptions B.1 to B.3 and B.5 in Appendix B.2 are satisfied. Let

α ∈ (0, 1/2) be the pre-chosen significance level.

(i) Under the H0 in characterized by inequalities (3.5), we have

lim sup
n→∞

P(ϕn = 1|H0) ≤ α. (3.9)

(ii) Under H1,

lim sup
n→∞

P(ϕn = 1|H1) = 1. (3.10)

3.2 A semiparametric test with covariates dimension reduction

In this section, we introduce a semiparametric test in the presence of covariates X. We

begin by introducing the following assumptions.

Assumption 3.1 (Conditional Random Assignment of Judges) Z ⊥ (Y0(z), Y1(z), Dz; z ∈
Z)|X = x for all x ∈ X .

Assumption 3.2 (Single Threshold-Crossing with Covaraites: STC) The judge treat-

ment assignment mechanism is governed by the following threshold crossing model D =

1{ν(Z,X) ≥ U} for some measurable and non-trivial function ν, where the distribution

of U is absolutely continuous.

When Assumptions 2.2, 3.1 and 3.2 hold, the testable implications can be written as

follows. For all x ∈ X , p1, p2 ∈ P and p1 ≥ p2, and all y, y′ ∈ Y

P(y < Y ≤ y′, D = 1|P = p1, X = x) ≥ P(y < Y ≤ y′, D = 1|P = p2, X = x), (3.11)

P(y < Y ≤ y′, D = 0|P = p1, X = x) ≤ P(y < Y ≤ y′, D = 0|P = p2, X = x). (3.12)
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Remark 3.1 If X is discrete and X only contains a relatively small number of values,

or X contains a small number of continuous variables, we can also follow the same pro-

cedure as in Section 3.1 but add cubes for X. Under the null hypothesis, we should expect

T ≡
∑

d=0,1

∑
x∈X

∑
ℓ∈L max{νd(ℓ, x), 0}2Ω(ℓ, x) = 0, where Ω(ℓ, x) is a positive weighting

function chosen by researchers, and

ν1(ℓ, x) ≡ E[D1{y ≤ Y ≤ y + ry}1{x ≤ X ≤ x+ rx}1{p2 ≤ P ≤ p2 + rp}]

×E[1{x ≤ X ≤ x+ rx}1{p1 ≤ P ≤ p1 + rp}]−E[1{x ≤ X ≤ x+ rx}{p2 ≤ P ≤ p2 + rp}]

× E[D1{y ≤ Y ≤ y + ry}1{x ≤ X ≤ x+ rx}1{p1 ≤ P ≤ p1 + rp}],

and

ν0(ℓ, x) ≡ E[(D − 1)1{y ≤ Y ≤ y + ry}1{x ≤ X ≤ x+ rx}1{p2 ≤ P ≤ p2 + rp}]

×E[1{x ≤ X ≤ x+ rx}1{p1 ≤ P ≤ p1+ rp}]−E[1{x ≤ X ≤ x+ rx}1{p2 ≤ P ≤ p2+ rp}]

× E[(D − 1)1{y ≤ Y ≤ y + ry}1{x ≤ X ≤ x+ rx}1{p1 ≤ P ≤ p1 + rp}],

and rx is similarly defined as rp and ry. The implementation follows analogously from

Algorithm 3.1.

When the dimension of X is high, an alternative approach is to include the covariates

parametrically, as in Carr and Kitagawa (2021, Assumptions A.4 and A.5), which we state

below:

Assumption 3.3 (i) For d = 0, 1, then potential outcomes take the form of Yd =

αd + X ′βd + Ud, where (αd, βd) are constants, and (ii) the residual terms (U0, U1) sat-

isfy (U0, U1, V ) ⊥ (X,Z).

Carr and Kitagawa (2021, Proposition 2) show if Assumption 3.1 is strengthened to

Assumption 3.3, then the testable implications in (3.11) and (3.12) can be characterized

as

P(y < Ỹ ≤ y′, D = 1|P = p1) ≥ P(y < Ỹ ≤ y′, D = 1|P = p2), (3.13)

P(y < Ỹ ≤ y′, D = 0|P = p1) ≤ P(y < Ỹ ≤ y′, D = 0|P = p2), (3.14)
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for y, y′ ∈ Y , and

Ỹ = D(U1+α1)+(1−D)(U0+α0) = D(Y1−X ′β1)+(1−D)(Y0−X ′β0) = Y−X ′(Dβ1+(1−D)β0).

The advantage of using (3.13) and (3.14) is that both inequalities are only conditional

on the scalar-valued propensity score. The effect of covariates has been filtered out by

constructing a new outcome variable Ỹ . Assumption 3.3 is a common assumption made in

the literature for estimating the MTE, see for instance Carneiro and Lee (2009); Carneiro,

Heckman, and Vytlacil (2010); Kowalski (2016). Nevertheless, we do acknowledge it is

subject to the potential risk of model mis-specification. Under the null hypothesis of the

model being correctly specified, parameters β0 and β1 can be estimated by partial linear

regression of Y on X and propensity score P separately for the sample of D = 1 and

D = 0:

E[Y |X = x, P = p,D = d] = x′βd +Kd(p), d ∈ {0, 1},

where Kd(p) = E[αd+Ud|X = x,D = d, P = p] only depends on p under Assumption 3.3-

(ii). The following algorithm summarizes the steps for implementation.

Algorithm 3.2 1. The procedure starts with estimated propensity score P̂i = P (Zi, Xi, θ̂)

using Equation (D.11).

2. Choosing the subsample with D = d, and within this subsample,

(a) Estimate E[Y |P ] nonparametrically,9 and calculate the residual ePi ≡ Yi −
Ê[Yi|P̂i].

(b) Estimate E[X|P ] nonparametrically, and calculate the residual eXi ≡ Xi −
Ê[Xi|P̂i].

(c) Regress ePi on eXi and obtain the OLS estimates, denoted by β̂d.

3. Once β̂1 and β̂0 are obtained, one can construct estimates for Ỹi = Yi −X ′
i(Diβ̂1 +

(1−Di)β̂0)

4. Follow the rest of steps in Algorithm 3.1 with Y being replaced by Ỹ .

9One can consider local polynomial estimation as in Carneiro and Lee (2009) or do global estimation
as in Kowalski (2016). Since we do not need to estimate the derivative K ′(p) in our paper, we use global
polynomial regression in Kowalski (2016) for our simulation and empirical applications.
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4 Simulation and Empirical Application

4.1 Simulation

In this subsection, we provide two sets of simulations to assess the size and power proper-

ties of our sharp test under various DGPs in finite samples. Throughout this section, we

ran 1000 replications for each simulation design, and the bootstrap sample size is chosen

to be B = 800. We set an = 0.15 lnn and Bn = 0.85 lnn/ln lnn, as in Hsu, Liu, and Shi

(2019). We choose QP = 5 and QY = 5 (for continuous Y ) or QY = 2 (for binary Y ). We

set the infinitesimal constant η = 10−6 and the constant ϵ = 10−6 (see the definition of

σ̂2
d,ϵ(ℓ) in Algorithm 3.1-4).

4.1.1 Binary outcome

The first set of simulations is based on a DGP introduced in FLL (online appendix, page

22). In this set of simulations, we mimic the random assignment of n defendants to a

pool of J judges, ensuring an equitable distribution of n
J
defendants to each judge. As in

FLL, the severity probability of each judge j is set as follows:

pj = pa +
j − 1

J − 1
(1− pa − pn)

Here, pa and pn stand for the fraction of always and never treated defendants, respectively.

FLL consider a binary outcome model where the outcome Y ∈ {0, 1} satisfies the following
condition:

E [Y | pj] =
1− (1− λ)(pn + pa)

1− (pn + pa)
pj −

λ

1− (pn + pa)
pa.

The parameter λ dictates the extent of deviation from the exclusion restriction assump-

tion. When λ = 0, there is no violation of the judge leniency design assumptions. Conse-

quently, for λ = 0, the simulations aim at assessing the size property of the two different

tests. On the other hand, λ > 0 signifies a departure from the judge leniency design

assumption, with higher (absolute) values indicating a more pronounced deviation. Like

in the original paper, we adopt the parametrization for the fraction of always and never

treated pn = pa = 0.2. Meanwhile, we vary the value of λ within the range of 0 to 1. Note

that the parameter λ directly governs the shape of the function E[Y |P = p]. The nonzero

value of λ can potentially be generated by violations of one of the three assumptions (or
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their combinations).
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Figure 1: Testable restrictions by degree of violations of exclusion restriction

Figure 1 visually illustrates our testable implications of the judge leniency design for

the specific function g(Y ) = 1{0 < Y ≤ 1} = Y (because Y is binary). The left and right

panels of the figure, respectively, depict E[−Y (1 −D)|P = p] and E[Y D|P = p]. These

population quantities are approximated by a large number of defendants (1 million) for

each judge. Intuitively, it is expected that E[Y D|P = p] and E[−Y (1−D)|P = p] should

be non-decreasing when the judge leniency design holds. When the exclusion restriction

holds, as shown in both figures with λ = 0, E[Y D|P = p] and E[−Y (1−D)|P = p] behave

as expected. However, for a violation of the exclusion restriction (λ = 0.4 or λ = 0.8),

despite that E[Y D|P = p] remains to be increasing, the other function E[−Y (1−D)|P =

p] decreases for higher values of the propensity score. This discrepancy starkly contrasts

with the implications of the judge leniency design assumptions.

In Figure 2-(a), we report the size property for our sharp test and FFL’s test at

5% significance level (when λ = 0). The simulation designs involve twenty judges and

varying sample sizes, ranging from 500 defendants (equivalent to 50 defendants per judge)

to 5500 defendants (equivalent to 550 defendants per judge). The plot reveals that both

tests control size well in the aforementioned DGP. Specifically, it is evident from the graph

that the rejection rate of our sharp test is controlled by and close to the nominal level

of 5%. Conversely, the nonparametric test proposed in FLL consistently yields rejection

rates close to zero when setting the tuning parameter K = 1.10

10Recall the outcome variable is binary; hence, the largest possible absolute value for the treatment
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Figure 2: Rejection rates in FLL’s DGP

FLL discuss how one can improve the power of their testing methodology by consid-

ering more stringent upper bounds on the largest possible treatment effects (i.e., using

a smaller value of K). For instance, in their empirical application of a binary outcome

model–where the maximum treatment effect is set at 1–they advocate exploring smaller

permissible maximum treatment effect values. However, if K is set to be too small, then

FLL’s test can have server size distortion. Indeed, Figure 2-(b) graphically represents this

situation by plotting the rejection rate associated with FLL’s nonparametric test under

two additional cases: when the maximum allowable treatment effect K is set at 0.8 and

0.4, respectively. The striking observation is that the conclusions drawn from these sce-

narios can be misleading, as they suggest an excessive over-rejection of the assumptions

even when those assumptions are indeed satisfied. For example, if one sets K = 0.4, then

the rejection rate is always 100% whenever the sample size is greater or equal to 1000.

As a matter of fact, the rejection we observe from Figure 2-(b) reflects that the ad-hoc

imposed magnitude of the treatment effect is not correct, but the underlying exclusion re-

effect is 1. These results correspond to Figures 9 and 10 in the online appendix of FLL, where the
rejection probabilities are nearly zero for various sample sizes when λ = 0.
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striction holds. Our test is immune to this problem since it does not require pre-specifying

the magnitude order of the unknown treatment effect.

To assess and compare the power property of the two nonparametric tests, Figure 2-

(c) plots the rejection rate as a function of λ for 10 judges and 1000 defendants (100

defendants per judge). The solid line is the rejection rate of the FLL test, which is nearly

the same as what is plotted in FLL (Appendix, Figure 10). The rejection rate achieved

by our sharp test consistently surpasses that of the FLL test across the entire spectrum

of exclusion restriction violations, as indicated by varying degrees of λ. As shown, the

power improvement can be substantial.

4.1.2 Continuous outcome

The second set of simulations aims to show the performance of our test in detecting

violations of the judge leniency design when the outcome is continuous and unbounded.

Let (U0, U1, U, Z
∗) ∼ N(µµµ,Σ), where µµµ = (µ0, µ1, µU , µZ)

′ is a vector of means, and Σ is

a covariance matrix. For generic random variables A and B, let σ2
A be the variance of A

and ρA,B be the correlation coefficient between A and B. In this design, we set σA = 1 for

all A ∈ {U1, U0, U, Z
∗}. We let ρU0,U = −0.5, ρU1,U = 0.5, ρU,Z = 0, ρU1,U0 = 0, ρU1,Z = δ1,

and ρU0,Z = δ1. To create discrete judges or IV, we set

Z = F−1
Z∗

(
ℓ(Z∗)

L

)
, ℓ(Z∗) = argmin

ℓ=1,2,··· ,L−1

∣∣∣∣FZ∗(Z∗)− ℓ

L

∣∣∣∣ .
That is, we divide the support of Z∗ by L equal-probability intervals and concentrate

the mass over each interval to its nearest cutoff points. Let the potential outcomes and

treatment assignment be

D =1{ν(X,Z) > U} × 1{δ2 = 0}

+ [1{ν(X,Z) > U}1{U ≥ U0}+ 1{1− ν(X,Z) > U}1{U < U0}]× 1{δ2 ̸= 0},

and

Yd(z) = αd +Xβd + δ3z + Ud, Yd =
∑
z∈Z

Yd(z)1{Z = z}.

where X ∼ N(0, 1) is independent of all the other random variables. We let ν(x, z) = z

and set α0 = 0, and α1 = 1.The δ parameters, however, are set to be different values to
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Figure 3: Sharp Testable Restrictions for Different DGPs

capture different violations of the judge leniency design. More specifically,

1. when δ1 = δ2 = δ3 = 0, the assumptions of the judge leniency design hold;

2. δ1 ̸= 0 denotes violation of the independence assumption;

3. δ2 ̸= 0 denotes violation of the monotonicity assumption; In this case, the selection

equation becomes

D = 1{Z > U}1{U ≥ U0}+ 1{1− Z > U}1{U < U0},

which indicates that there are two groups of judges, each with distinct skills (or

preferences) in assigning treatment. This is in clear violation of the monotonicity

assumption, which requires all judges to have the same skill (Chan, Gentzkow, and

Yu, 2022).

4. δ3 ̸= 0 denotes violation of the exclusion restriction.

Figure 3 plots E[g(Y )D|P = p] as a function of p when g(Y ) = 1{Y ≥ 0.5} and

20 judges for a simple illustration. The graphs were simulated with a large sample size

(over three million) and approximated the population quantity. The function is non-

decreasing when all assumptions are met, as shown in the upper-left panel. In contrast,

E[g(Y )D|P = p] deviates from the expected pattern when the judge leniency design

assumptions are violated in different ways.
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Figure 8, on the other hand, plots the testable implication used in FLL. The left side

panels plot E[Y |P = p] for each of the p ∈ {p1, p2, · · · , p20} (sorted in increasing order)

for each of the four designs. The right panels plot the “numerical derivative” of the

form
E[Y |P=pj ]−E[Y |P=pj−1]

pj−pj−1
against {p2, · · · , p20}. The FLL testable implications require

that the curves in the right-hand side panels be bounded between [−K,K], where K

again is the difference between the upper and lower bounds of the support. Note that

in this example, the outcomes have unbounded support and, therefore, K = +∞. If

we choose K as a large number, then it is apparent that all four designs satisfy FLL’s

testable implication. Hence, we expect no rejection for designs 2-4, albeit they violate the

identifying assumptions unless K is set to be relatively small.
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Figure 4: FLL Testable Restrictions for Different DGPs

We proceed by implementing our sharp test and FLL’s nonparametric test. This

comparison is conducted across various parameter values and sample sizes. Specifically,

we consider a size design (Size δ1 = δ2 = δ3 = 0), violation of independence (Power1

δ1 = −0.5, δ2 = δ3 = 0), violation of monotonicity (Power2 δ2 ̸= 0, δ1 = δ3 = 0), and

violation of exclusion (Power3 δ3 = −0.5, δ1 = δ2 = 0). For each violation, we consider
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situations with covariates (β1 = β0 = 1) or without covariates (β1 = β0 = 0 ). When there

are covariates, we use Carr and Kitagawa (2021)’s method to control for covariates, as

discussed in the previous section. To implement FLL’s test, we set K to be the difference

between sample maximum (ymax) and minimum (ymin): ∆y ≡ ymax − ymin. We also

consider K = ∆y

8
and K = ∆y

16
. The results are summarized in Table 1.

Table 1: Rejection Rate under Different Types of DGPs

δ1 = δ2 = δ3 = 0 (Size) δ1 = −0.5, δ2 = δ3 = 0 (Power1)
Without Covariates n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000

Sharp Test 0.000 0.000 0.000 0.436 0.848 0.995
FLL-nonp, K = ∆y 0.000 0.000 0.000 0.000 0.000 0.000

FLL-nonp, K = ∆y

8
0.007 0.001 0.018 0.015 0.054 0.129

FLL-nonp, K = ∆y

16
0.064 0.284 0.719 0.101 0.376 0.839

δ2 ̸= 0, δ1 = δ3 = 0 (Power2) δ3 = −0.5, δ1 = δ2 = 0 (Power3)
Without Covariates n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000

Sharp Test 0.374 0.734 0.942 0.183 0.503 0.902
FLL-nonp, K = ∆y 0.000 0.000 0.000 0.000 0.000 0.000

FLL-nonp, K = ∆y

8
0.015 0.037 0.079 0.005 0.004 0.008

FLL-nonp, K = ∆y

16
0.065 0.104 0.322 0.019 0.049 0.107

δ1 = δ2 = δ3 = 0 (Size) δ1 = −0.5, δ2 = δ3 = 0 (Power1)
With Covariates n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000

Sharp Test 0.000 0.000 0.000 0.424 0.821 0.993
FLL-nonp, K = ∆y 0.000 0.000 0.000 0.000 0.000 0.000

FLL-nonp, K = ∆y

8
0.003 0.000 0.000 0.029 0.018 0.041

FLL-nonp, K = ∆y

16
0.069 0.113 0.293 0.084 0.173 0.456

δ2 ̸= 0, δ1 = δ3 = 0 (Power2) δ3 = −0.5, δ1 = δ2 = 0 (Power3)
With Covariates n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000

Sharp Test 0.345 0.714 0.936 0.167 0.488 0.902
FLL-nonp, K = ∆y 0.000 0.000 0.000 0.000 0.000 0.000

FLL-nonp, K = ∆y

8
0.006 0.013 0.022 0.004 0.002 0.001

FLL-nonp, K = ∆y

16
0.050 0.075 0.225 0.018 0.017 0.042

Regarding the size property, all tests control the size except the FLL test when K

is set to be very small. Our test and the FLL test with K = ∆y and K = ∆y

8
are

28



conservative. When one sets K = ∆y

16
, the rejection probability of FLL’s test increases

quickly even when all the assumptions are satisfied (the first design). This is unsurprising

because a very smallK essentially introduced another severe misspecification to the model.

However, when examining the power property of the three tests, we see clearly that our

test outperforms FLL’s tests by a large margin. The proposed sharp test has enough

power to detect the violation of any of the three assumptions (independence, exclusion,

and monotonicity). In particular, the rejection rates for our sharp test quickly increase

with sample size, surpassing 90% for all cases when the sample size reaches 2000 (or 100

cases per judge). Note that in this simulation, the parametric form of the propensity score

is correctly specified (except for Power2 when monotonicity is violated); hence, the high

power of our test is not because of misspecification of P (z, θ0). In contrast, FLL’s test

has low power performance unless we set K as a small value, which, on the other hand,

induces size distortion.

Table 2 further examines how the rejection frequency varies as the “magnitude of

violation varies” for independence and exclusion. For this exercise, we focus on sample

size n = 1000 (50 cases per judge). Not surprisingly, when the magnitude of the violation

is small, all tests have low power. However, as the degree of violation increases, the

power of our sharp test rises quickly, even quicker than the FLL’s nonparametric test

with K = ∆y

16
. On the other hand, when K = ∆y, FLL’s nonparametric test does not

reject even if the degree of violation is substantial. Again, this table demonstrates that

sharp testable implications are desirable in practice.

4.2 Empirical illustration

In this subsection, we employ our test to assess the validity of the judge leniency designs

using data from Stevenson (2018); see also Cunningham (2021), who studies the impact

of pretrial detention on conviction. Using Philadelphia court records and leveraging the

varying leniency of bail magistrates as an instrumental variable, the author discovers that

pretrial detention leads to a 13% increase in the likelihood of conviction.

In the Philadelphia court system, following an arrest, individuals are taken to one

of seven city police stations for a video conference interview by Pretrial Services, which

assesses risk factors and financial details for public defense eligibility. Utilizing this infor-

mation, Pretrial Services assigns arrestees to a bail recommendation grid. Bail hearings,

29



Table 2: Rejection Rate under Different Levels of Violations (No Covariates)

δ2 = δ3 = 0, n = 1000 δ1 = −0.1 δ1 = −0.3 δ1 = −0.5 δ1 = −0.7

Sharp Test 0.001 0.085 0.825 1.000
FLL-nonp, K = ∆y 0.000 0.000 0.000 0.000

FLL-nonp, K = ∆y

8
0.001 0.004 0.054 0.911

FLL-nonp, K = ∆y

16
0.026 0.006 0.397 0.917

δ1 = δ2 = 0, n = 1000 δ3 = −0.1 δ3 = −0.3 δ3 = −0.5 δ3 = −0.7

Sharp Test 0.000 0.069 0.471 0.931
FLL-nonp, K = ∆y 0.000 0.000 0.000 0.000

FLL-nonp, K = ∆y

8
0.000 0.000 0.005 0.114

FLL-nonp, K = ∆y

16
0.027 0.002 0.032 0.798

conducted by magistrates every four hours via video conference, involve a brief process

where charges are explained, next court appearances are specified, eligibility for a court-

appointed defense attorney is determined, and bail amounts are set based on arrest details,

interviews, criminal history, guidelines, and input from representatives. Magistrates hold

broad authority to assign bail, which can fall into categories such as release without

payment, cash bail with a 10% deposit, or no bail at all.

Stevenson (2018)’s research design leverages the varying magistrate tendencies to as-

sign affordable bail as an instrument to study detention’s impact on case outcomes. To

answer the research questions, the author utilizes data from the court records of the Penn-

sylvania Unified Judicial System, obtained through web scraping of public records in PDF

format, which are then transformed for statistical analysis. The dataset encompasses ar-

rests in Philadelphia, where charges were filed between September 13, 2006, and February

18, 2013. The final dataset includes 331,971 cases and eight randomly assigned judges,

with each observation pertaining to a specific criminal case. As noted in Stevenson (2018),

the shift-rotation system at the Philadelphia court forms the basis for such randomness.

In what follows, we focus on the aggregate dataset (all criminal cases together) and

four primary categories of criminal cases in the data: aggressive assault, robbery, drug

sale, and drug possession. These four criminal cases we consider in isolation constitute

43% of the total cases. In Figure 5, we present two scatter plots for each crime cate-

gory: {(pj,E[Y D|P = pj])}8j=1 and {(pj,−E[Y (1 −D)|P = pj])}8j=1, along with a fitted
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polynomial to illustrate whether the anticipated implications of the judge leniency de-

sign framework are satisfied for the considered categories of criminal cases. The graphs

indicate E[Y D|P = p] and E[−Y (1 − D)|P = p] are most likely to be non-decreasing

for the aggressive assault case.11 The non-decreasing shape of the functions is unclear

for the other types of criminal categories. Although this graphical representation does

not constitute a formal test, it offers an intuitive insight. Specifically, it suggests that

the assumptions are the least likely to be violated in the aggressive assault case, while

the drug possession case shows the highest likelihood of violating the assumptions of the

judge leniency design.

(a) Aggressive assault (b) Robbery

(c) Drug sell (d) Drug possession

Figure 5: Testable restrictions by case types

We observe a relatively large set of covariates, including fixed effects for year, month,

and day of the week. We, consequently, implement the semi-parametric version of our

test. For comparison, we also implement FLL’s nonparametric and semi-parametric tests.

The results of the three tests are presented in Table 3 for both the aggregate dataset and

11Note all the outcome variables are binary. Therefore, the close interval we use for the Theorem 1 is
1{0 < Y ≤ 1}, which equals to Y .
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separately for each of the four crime categories aforementioned. The nonparametric test

introduced by FLL indicates the validity of judge leniency design cannot be rejected either

conditioning on each crime category or the aggregate data set at 10% level, despite that

the shape of E[Y D|P = p] and E[−Y (1−D)|P = p] for the drug possession type suggests

the opposite. In contrast, our novel test yields results that align with expectations.

For instance, the sharp test does not indicate a rejection of the validity of the judge

leniency design assumptions for the aggressive assault. However, for all three other types

of offenses, our test rejects the validity of the judge leniency design. Meanwhile, FLL’s

semi-parametric test rejects the category of aggregate assault.12 These results suggest that

using the Wald estimand or the MTE approach for those cases will lead to inconsistent

estimates of the causal effects of interest.

Finally, we see no evidence to refute the assumptions underpinning the judge leniency

design when applying our sharp test to the aggregate dataset. This outcome may be

influenced by the notably high proportion of aggressive assault cases within the dataset

compared to other categories. Our result also ascertains that the exclusion restriction or

monotonicity can hold for some crime categories but not others, suggesting that controlling

the crime type is important in practice.

Table 3: Testing Judge Leniency Design: p-values

Sharp Test FLL-Nonp FLL-Semip

All 0.821 0.056 0.114
Aggressive assault 0.913 0.996 0.015
Robbery 0.033 1.000 0.109
Drug sale 0.005 0.116 0.180
Drug possession 0.000 0.929 0.610

Notes: This table reports the results of the statistical tests using Stevenson (2018)’data, including time

fixed effects as controls. Specifically, the considered controls are year, month, and day-of-the-week fixed

effects. Sharp Test stands for our novel semi-parametric test developed in this paper, while FLL-Nonp

and FLL-Semip represent the nonparametric and semi-parametric tests of FLL (three knots B-spline),

respectively.

12For FLL’s semi-parametric test, we fit the regression function E[Y |P = p] by B-spline with three
knots. The results for other numbers of knots are reported in the appendix. The reported p-value is the
“combined p-value” of the fit component and slope component of the test, and we can see from Table 4
in the online appendix that the rejection is mostly generated by the fit component.
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5 Salvage the Model under Weaker Assumptions

The rejection of the sharp test means that the judge’s leniency design assumptions are

too stringent for the data. In this case, relaxing some of these assumptions is required

to salvage the model. There are different ways to relax a model’s assumptions. One

way is to maintain the same estimand used in the stringent model and ask under what

conditions this estimand can still be interpreted causally. The model relaxation recently

entertained by FLL falls into this second approach, providing alternative conditions under

which the 2SLS could still have a causal interpretation when Assumptions 2.1 to 2.3 are

too stringent for the data. In Section 5.1, we revisit the average exclusion assumption

proposed by FLL and show it is a special case of a zero-covariance condition: a restriction

that may not always be justifiable in all empirical settings.

There is another approach that focuses on a well-defined policy-relevant parameter and

examines how this parameter could be point-identified or set-identified using weaker and

more credible assumptions. In such a case, the parameter of interest remains the same,

but the (set) estimands may vary depending on the credible assumptions one would be

willing to maintain. We will discuss this approach in Section 5.2.13

5.1 Average Exclusion and Monotonicity

We first revisit the average exclusion and monotonicity conditions. For simplicity, suppose

Z has finite support as in FLL such that Z = {1, 2, · · · , J}. The general form of the

potential outcome model is,

Y = Ỹ1D + Ỹ0(1−D), Ỹd =
∑
z∈Z

Yd(z)1{Z = z}, D =
∑
z∈Z

Dz1{Z = z}.

FLL proposes to relax Assumption 2.2 and Assumption 2.3 with the average exclusion

restriction and the average monotonicity assumption, respectively:

Assumption 5.1 Let λz = Pr(Z = z), pz = E[Dz], p =
∑

z∈Z λzpz, D̄ =
∑

z∈Z λzDz,

and Ȳd =
∑

z∈Z λzYd(z) for d ∈ {0, 1}.
13In this section, we mainly focus on the case in which the exclusion or monotonicity assumption is

violated. When the random assignment assumption is violated, one can consider a partial identification,
see Mourifié and Wan (2025).
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(a) Average exclusion restriction:

E

[∑
z∈Z

λz (pz − p)
{
(Y0(z)− Ȳ0)(1−Dz) + (Y1(z)− Ȳ1)Dz

}]
= 0.

(b) Average monotonicity: ω ≡
∑

z∈Z λz (pz − p)
(
Dz − D̄

)
≥ 0 almost surely.

Under Assumptions 2.1 and 5.1, FLL’s Theorem 3 shows that the 2SLS estimand (of using

P (Z) as IV) has a causal interpretation since it can be written as a weighted average of

the following treatment effect δ = Ȳ1 − Ȳ0 i.e.,

Cov(Y, P (Z))

Cov(D,P (Z))
= E

[
ω

E[ω]
δ

]
. (5.1)

Note that the δ in Equation (5.1) is a deterministic function of the collection of potential

outcomes {Yd(z)}d=0,1,z∈Z . The 2SLS estimand is causal because it is a weighted average

of δ and the weight ω is positive by the average monotonicity (Assumption 5.1-(b)).

Proposition 5.1 below provides a generalization and more transparent discussion of

the FLL’s Theorem 3. First, we demonstrate that the average exclusion assumption is

essentially equivalent to a zero covariance condition. Second, we show that Equation (5.1)

indeed holds for any deterministic function of {Yd(z)}d=0,1,z∈Z , not just for δ.

To clarify these points, let us define αz ≡ Y1(z)−Y0(z), and α̃ =
∑

z∈Z αz1{Z = z} =

Y1(Z) − Y0(Z). Let α ≡ h(Y1(1), ..., Y1(J), Y0(1), ..., Y0(J)) be an arbitrary measurable

deterministic function of the collection of potential outcomes. δ defined in Assumption 5.1

is a special case when we pick h(Y1(1), ..., Y1(J), Y0(1), ..., Y0(J)) = Ȳ1 − Ȳ0. One could

instead be interested in different treatment effects specific to each judge: α = αz, z =

1, 2, · · · , J . α can also be a quantity without clear economic interpretation such as α =∑
z∈Z zY1(z).

Proposition 5.1

(a) Under Assumption 2.1, and Assumption 5.1(b), the following equation holds for any

measurable deterministic function α of the collection of potential outcomes:

Cov(Y, P (Z))

Cov(D,P (Z))
= E

[
ω

E[ω]
α

]
+

Cov
(
(α̃− α)D + Ỹ0, P (Z)

)
E [ω]

34



where Ỹd =
∑

z∈Z Yd(z)1{Z = z}.

(b) Under Assumption 2.1, for α = Ȳ1− Ȳ0 =
∑

z λz(Y1(z)−Y0(z)) =
∑

z λzαz we have:

Cov
(
(α̃− α)D + Ỹ0, P (Z)

)
= E

[∑
z∈Z

λz (pz − p)
{
(Y0(z)− Ȳ0)(1−Dz) + (Y1(z)− Ȳ1)Dz

}]
.

The proof for the proposition is collected in Appendix B.3. Under Assumption 2.1 (in-

dependence), Proposition 5.1(b) shows that the average exclusion restriction of FLL is, in-

deed, a special case of the zero-covariance assumption when α = δ. Proposition 5.1(a) fur-

ther shows that if one targets an arbitrary quantity α ≡ h(Y1(1), ..., Y1(J), Y0(1), ..., Y0(J)),

and if one is willing to impose the same zero-covariance assumption on α:

Cov
(
(α̃− α)D + Ỹ0, P (Z)

)
= 0, (5.2)

then one can always interpret 2SLS estimand as the weighted average of α with positive

weights under the average monotonicity Assumption 5.1(b). This happens because the

above zero-covariance condition in Equation (5.2) is a reduced-form condition, which

assumes that the correlation between a reduced-form error (involving the parameter of

interest) and the propensity score, i.e. Cov (Y − αD,P (Z)) = 0.

How does one assess the plausibility of the average exclusion condition? FLL provides a

heuristic argument.14 However, this argument could also be invoked by anyone who wants

to impose that Equation (5.2) holds for other α ̸= δ. Also, it is difficult to justify why

Cov
(
(δ̃ − δ)D + Ỹ0, P (Z)

)
= 0 but Cov

(
(α̃− α)D + Ỹ0, P (Z)

)
̸= 0 for other α ̸= δ.

Furthermore, it is worth noting that the average exclusion restriction is not invariant

to a relabelling of the treatment. In other terms, this assumption may hold if the re-

searcher defines the treatment as D equals 1 if incarceration and 0 if not, while it may

not hold if the researcher recodes the treatment as D equals 1 if no incarceration and 0 if

incarceration. Indeed, after a relabelling, the zero-covariance in Equation (5.2) becomes:

Cov
(
(α̃− α)D + Ỹ1, P (Z)

)
= 0. It follows that the average exclusion assumption is

invariant to a relabelling if and only if Cov
(
Ỹ1, P (Z)

)
= Cov

(
Ỹ0, P (Z)

)
.

14Frandsen, Lefgren, and Leslie (2023, page 19): “Average exclusion can be probed by examining the cor-
relation between judge-level treatment propensity and judge-level averages of alternative channels through
which judges may affect outcomes if such channels are observed. Average exclusion may be more plausible
if these correlations are near zero.”
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Despite all those discussed above, we do observe a direct way to assess the validity of

Assumptions 2.1 and 5.1. In fact, under these assumptions, there is:∣∣∣∣Cov(Y, P (Z))Cov(D,P (Z))

∣∣∣∣ ≤ E
[∣∣∣∣ ω

E[ω]
δ

∣∣∣∣] ≤ E [|δ|] ≤ U − L

where U and L are, respectively, the upper and lower bounds of Y . Therefore, if the

support of the outcome is bounded from both above and below, then the absolute value

of the 2SLS estimand must also be bounded.

5.2 Conditioning on Judge’s Characteristics

In practice, it is not uncommon for researchers to have good reason to believe the assump-

tions hold after controlling for the judge’s specific characteristics. We explore this idea in

this section and demonstrate that it is closely related to the partial exclusion assumption

(defined below) and the partial monotonicity assumption made in Mogstad, Torgovitsky,

and Walters (2019). Specifically, we decompose Z into two components: ZI and Zc, and

we assume the monotonicity and exclusion restriction hold conditionally on Zc. Here, Zc

can be a judge’s race or political party, and ZI is a vector of the remaining characteristics.

Assumption 5.2 (Partial Exclusion) Let Z ≡ (Z ′
I , Z

′
c)

′. For d ∈ {0, 1}, Yd(z) =

Yd(zc) for all z ∈ Z.

Assumption 5.3 (Partial Monotonicity) For any (zI , zc) and (z′I , zc) ∈ Z ×Z either

D(zI , zc) ≥ D(z′I , zc) for all defendants or D(zI , zc) ≤ D(z′I , zc) for all defendants.

The partial exclusion assumption relaxes Assumption 2.2 and allows the potential

outcomes to depend on the subvector Zc. For instance, when the treatment of interest

is incarceration, judges could assign and differ in other punishments, such as probation,

fines, or sentence length. These other punishments could directly affect potential out-

comes, making Assumption 2.2 unlikely. Minority judges may be less lenient in their

sentence length than their majority counterparts (Johnson, 2014). Beyond the decision

to incarcerate, different sentence lengths may have divergent effects on future labor mar-

ket outcomes. If the sentence length is not observed or controlled, we would expect the

potential outcome to depend on whether a judge is a minority judge through this channel.

The partial exclusion assumption states that whether and how the judge assigns other
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types of punishment depends only on a subset of the judge’s observable characteristics

(Zc), but not on others (ZI). In other words, a defendant will end up with the same pair

of potential outcomes (Y1(zc), Y0(zc)) as long as he or she is assigned to judges with the

same observed characteristics Zc = zc. Finally, when the only instrument variable we

observe in the data is the identity of the judge ZI , then the partial exclusion assumption

is equivalent to the original exclusion Assumption 2.2.

The partial monotonicity Assumption 5.3 was initially introduced in Mogstad, Tor-

govitsky, and Walters (2019). It significantly weakens Assumption 2.3 since it does not

require comparing the level of leniency across judges with different observable character-

istics. For instance, let Zc = (ZR
c , Z

P
c ) be composed of the following binary variables: ZR

c

equal to 1 if the judge is black or Hispanic and 0 if not, while ZP
c is 1 if the judge is

from the Republican party and 0 if from the Democratic party. Imposing Assumption 2.3

means it is not possible to have a black democrat judge be more lenient than a white

republican judge for some defendants while being less lenient for other defendants, i.e.,

these two judges may have different cut-off points, but they rank all the defendants in the

same order. Mathematically, we can not have both P(D(zI , 1, 0) = 1, D(z′I , 0, 1) = 0) > 0

and P(D(z′I , 0, 1) = 1, D(zI , 1, 0) = 0) > 0. However, there is a large body of empirical

evidence of heterogeneity in the ranking of judges’ leniency across different types of offense

or defendants (see Abrams, Bertrand, and Mullainathan, 2012; Stevenson, 2018). This is,

however, compatible with the partial monotonicity. Its main advantage is that it no longer

requires a uniform ranking of defendants across different judges. Judges’ rankings are al-

lowed to vary with their characteristics Zc. Applying the result of Vytlacil (2002), the

partial monotonicity condition can be characterized as a partial single threshold-crossing

restriction under the independence assumption Assumption 2.1, which we restated below.

Assumption 5.4 (Partial Single Threshold-Crossing) Type Z = (ZI , Zc)’s judge

treatment assignment mechanism is governed by the following threshold crossing model

Dz = 1{ν(ZI , Zc) ≥ UZc} for a measurable function ν, where the distribution of Uzc is

absolutely continuous for all zc ∈ Zc.

Under Assumptions 2.1 and 5.4, we can apply the standard normalization,

D(zI , zc) = 1
{
FUzc |Zc(ν(zI , zc)|zc) ≥ FUzc |Zc(Uzc |zc)

}
≡ 1 {P (zI , zc) ≥ Vzc} ,
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where FUzc
(·) is the distribution function of Uzc , P (zI , zc) is identified from the observed

(D,Z) by P (zI , zc) ≡ P(D = 1|ZI = zI , Zc = zc). Note by construction, Vzc follows

Uniform[0, 1] distribution because the distribution of Uzc is absolute continuous; also,

Vzc is independent with (ZI , Zc).

The key difference between the STC and the Partial STC is even though Vzc follows

Uniform[0, 1] distribution, each defendant does not face a single V . Instead, he or she

faces a collection of {Vzc , zc ∈ Zc}. This unobserved latent variable is now different for

judges with distinct observable characteristics. The partial STC has a natural interpre-

tation as an extension of the Roy model (Canay, Mogstad, and Mountjoy, 2024). We can

interpret P (zI , zc) as the perceived gain of incarcerating a defendant by a type z = (zI , zc)

judge, and Vzc as the expected cost (but unobserved to the econometrician) of incarcerat-

ing a defendant. The particularity of the partial STC is that the expected cost can vary

across judges with distinct observable characteristics zc, but is fixed within judges with

the same zc. In the standard monotonicity assumption, the cost V would be the same

regardless of the characteristics (zI , zc). For the same reason, the partial STC is also more

reasonable in settings where decision-makers (judges) differ in their preferences and skills

(Chan, Gentzkow, and Yu, 2022).

Here, we provide an example of eight judges deciding whether to incarcerate a given

defendant to elucidate further the richer heterogeneity enabled by the partial monotonicity

(or, equivalently, the partial STC) assumption. We consider the two observable charac-

teristics of the judges introduced earlier, Zc ≡ (ZR
c , Z

P
c ) ∈ {0, 1} × {0, 1}. These two

binary observable characteristics result in four types of judges. The eight judges are

evenly allocated across these four types.

The left rectangle of Figure 6 shows the benefit and the expected cost of incarcerating

the defendant in a separate unit segment for each judge. For example, p11 and p′11 are

the benefits of the two black democratic judges with type Zc = (1, 1) to incarcerate the

defendant. The right rectangle of Figure 6 plots the benefit numbers of all eight judges

on the same unit segment. Similarly, U11 represents the expected cost of incarcerating

the defendant by a black democratic judge: they share the same expected cost or skills.

A judge incarcerates the defendant when the corresponding benefit is higher than the

expected cost of incarceration. In Figure 6, the judges who incarcerate the defendant are

blue-colored, while those who release the defendant are red-colored.
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Figure 6: Monotonicity in Judge IV and Conditional Judge IV designs

The behavior of the eight judges does not violate Assumption 5.3 or Assumption 5.4.

However, the standard monotonicity Assumption 2.3 is clearly violated (right rectangle of

Figure 6). Indeed, the judge with propensity score p′11 incarcerates the defendant (blue-

colored), whereas judges with higher propensity scores p01, p10, or p00 do not incarcerate

the defendant (red-colored). Note that Assumption 2.3 would not be violated for this

group of judges only under one of these two conditions: (i) all four Vzc are greater than

the maximum of the eight propensities or smaller than the minimum of all eight properties.

In other words, when all judges make the same decision regarding this defendant, or (ii)

judges who do not incarcerate the defendant must have lower benefit scores than judges

who incarcerate the defendant. Moreover, one of these two conditions must hold for all

defendants when we impose Assumption 2.3 (or Assumption 2.4).

However, Assumption 5.3 (or Assumption 5.4) does not require such a binding restric-

tion. In particular, under the partial monotonicity assumption, defendants are allowed

to be defiers across judges with distinct observed characteristics ZC . For instance, in

Figure 6 and using propensity scores to identify judges, the defendant is a p′11−p01 defier,
a p′11 − p10 defier, a p′11 − p00 defier, and a p′01 − p00 defier.

Assumptions 2.1, 5.2 and 5.4 are weaker than Assumptions 2.1 to 2.3. We show that

under these weaker conditions, it is still possible to identify meaningful treatment effect

parameters.

39



Theorem 3 (Identification under Partial exclusion and monotonicity) If Assump-

tions 2.1, 5.2 and 5.4 hold, then:

(i) (Identification of the LATE). Let Pzc be the support of P (ZI , Zc) conditioning on

Zc = zc. Then for any pair (p, p′) ∈ Pzc ×Pzc such that p < p′ we have the following

identification results:

E[g(Y )|P = p′, Zc = zc]− E[g(Y )|P = p, Zc = zc]

p′ − p

= E[g(Y1(zc))− g(Y0(zc))|1{p < Vzc ≤ p′}].

(ii) (Identification of the MTE). For any p ∈ Pzc such that E[g(Y )|P = ·, Zc = zc] is

continuously differentiable in the neighborhood of p, then,

∂E[g(Y )|P = t, Zc = zc]

∂t

∣∣
t=p

= E[g(Y1(zc))− g(Y0(zc))|Vzc = p].

(iii) (Testable restrictions). For any fixed zc ∈ Zc, P(y < Y ≤ y′, D = 1|P = p, Zc = zc)

and −P(y < Y ≤ y′, D = 0|P = p, Zc = zc) are non-decreasing in p for all p ∈ PZc

and any y, y′ ∈ Y.

The proof of Theorem 3 is similar to Theorem 1 after conditioning on Zc = zc and

therefore omitted. The identification results stated in Theorem 3 (i)-(ii) demonstrate that

whenever there are two judges with distinct ZI but share the same observed characteristics

Zc = zc, the conditional Wald estimand identifies the LATE provided the propensity

scores for these two judges are different. Moreover, when the distribution of ZI |Zc = zc

allows one to take the derivative of E[g(Y )|P = ·, Zc = zc], the conditional LIV estimand

identifies the MTE. This identification result is a local version of the standard LATE and

MTE identification.

Theorem 3 (iii) presents the testable implications of the weaker monotonicity and

exclusion assumptions. The testable implications in Theorem 3 (iii) are weaker than

those in Theorem 1 (i). To see this, let us consider the same example of the eight judges

discussed above, where the outcome of interest is recidivism (Y ∈ {0, 1}). We consider

the same two observable characteristics of the judges, Zc ≡ (ZR
c , Z

P
c ) ∈ {0, 1} × {0, 1}.

Let θd(p) = P(Y = 0, D = d|P = p) for d ∈ {0, 1}. In this simple case, the sharp testable
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implications under the standard judge leniency design, i.e. Assumptions 2.1 to 2.3 are:

θ1(p′00) ≤ θ1(p′11) ≤ θ1(p01) ≤ θ1(p10) ≤ θ1(p′01) ≤ θ1(p00) ≤ θ1(p11) ≤ θ1(p′10)

θ0(p′00) ≥ θ0(p′11) ≥ θ0(p01) ≥ θ0(p10) ≥ θ0(p′01) ≥ θ0(p00) ≥ θ0(p11) ≥ θ0(p′10),

which is a total of fourteen inequalities. However, when invoking our weaker set of assump-

tions, we have only eight inequalities that characterize the sharp testable implications:

θ1(p′11) ≤ θ1(p11), θ1(p10) ≤ θ1(p′10), θ1(p01) ≤ θ1(p′01), θ1(p′00) ≤ θ1(p00)

θ0(p′11) ≥ θ0(p11), θ0(p10) ≥ θ0(p′10), θ0(p01) ≥ θ0(p′01), θ0(p′00) ≥ θ0(p00).

The comparison of the testable implications in Theorems 1 and 3 confirms that the judge

leniency design is more stringent than the conditional judge leniency design. Hence,

whenever the standard judge leniency design is rejected, the researcher may rely on its

relaxed versions as long as the testable implications derived in Theorem 3 are satisfied.

6 Conclusion

In this paper, we derive the sharp testable implications for identifying assumptions for

the judge’s leniency design in a general framework where the instruments can be either

discrete or continuous and propose a consistent test for the implications. Our simulation

study and empirical results highlight the importance of considering sharp implications for

a better use of information in the data. While we focus on the primary application of

testing the validity of judge leniency design, our method can be readily applied to a broad

range of other applications.
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APPENDIX

A Implementation of the test

In this section, we describe the details of calculating the test statistics for Algorithm 3.1. Let

{Yi, Zi, Di}ni=1 be a random sample and P (Di = 1|Zi) = P (Zi, θ0) be the propensity known to

θ0. Note that when Z is the judge’s identity and if the number of defendants for each judge

diverges to infinity, we can simply use the frequency estimator P̂i =
∑n

k=1 Dk1{Zk=Zi}∑n
k=1 1{Zk=Zi} . Therefore,

in the appendix sections, we focus on the case in which Z is continuous to simplify notation.

A.1 Constructing ν̂d(ℓ)

First, when Z is continuous, we estimate θ0 by MLE,

θ̂ = argmax
θ∈Θ

1

n

n∑
i=1

log f(Yi, Di, Zi, Xi, θ)

≡ argmax
θ∈Θ

1

n

n∑
i=1

Di logP (Zi, θ) + (1−Di) log(1− P (Zi, θ)). (A.1)

where P (z, θ) is parameterized and depends on z through z′θ. For example, P (z, θ) = Φ(z′θz)

for Probit or P (z, θ) = exp(z′θz)
1+exp(z′θz)

for Logit.

Next, note that

ν1(y, ry, p1, p2, rp, θ0) = m1(y, ry, p2, rp, θ0) · w(p1, rp, θ0)−m1(y, ry, p1, rp, θ0) · w(p2, rp, θ0),

ν0(y, ry, p1, p2, rp, θ0) = m0(y, ry, p2, rp, θ0) · w(p1, rp, θ0)−m0(y, ry, p1, rp, θ0) · w(p2, rp, θ0),

where

m1(y, ry, p, rp, θ) = E[D1(y ≤ Y ≤ y + ry)1(p ≤ P (Z, θ) ≤ p+ rp)], (A.2)

m0(y, ry, p, rp, θ) = E[(D − 1)1(y ≤ Y ≤ y + ry)1(p ≤ P (Z, θ) ≤ p+ rp)], (A.3)

w(p, rp, θ) = E[1(p ≤ P (Z, θ) ≤ p+ rp)]. (A.4)

We can estimate md(y, ry, p, rp, θ) and w(p, rp, θ) by sample analogs and θ be replaced by its
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MLE θ̂:

m̂d(y, ry, p, rp, θ̂) =
1

n

n∑
i=1

mdi(y, ry, p, rp, θ̂), d = 0, 1 (A.5)

ŵ(p, rp, θ̂) =
1

n

n∑
i=1

wi(p, rp, θ̂). (A.6)

with

m1i(y, ry, p, rp, θ) = Di1(y ≤ Yi ≤ y + ry)1(p ≤ P (Zi, θ) ≤ p+ rp),

m0i(y, ry, p, rp, θ) = (Di − 1)1(y ≤ Yi ≤ y + ry)1(p ≤ P (Zi, θ) ≤ p+ rp),

wi(p, rp, θ) = 1(p ≤ P (Zi, θ) ≤ p+ rp).

Then, for a given ℓ = (y, ry, p1, p2, rp)
′, we can estimate ν1(ℓ) and ν0(ℓ) by

ν̂1(ℓ) = m̂1(y, ry, p2, rp, θ̂) · ŵ(p1, rp, θ̂)− m̂1(y, ry, p1, rp, θ̂) · ŵ(p2, rp, θ̂), (A.7)

ν̂0(ℓ) = m̂0(y, ry, p2, rp, θ̂) · ŵ(p1, rp, θ̂)− m̂0(y, ry, p1, rp, θ̂) · ŵ(p2, rp, θ̂). (A.8)

A.2 Constructing ν̂bd(ℓ)

In this appendix, we show how to construct the bootstrap estimates ν̂bd(ℓ). For bootstrap

iteration b, let {W b
1 ,W

b
2 , · · · ,W b

n} be a sequence of i.i.d. random variables with both mean

and variance equal to one. For instance, we can choose standard normal. Let θ̂b be the MLE

based on the b-th bootstrapped sample:

θ̂b = argmax
θ∈Θ

1

n

n∑
i=1

W b
i log f(Yi, Di;Ziθ)

≡ argmax
θ∈Θ

1

n

n∑
i=1

W b
i {Di logP (Zi, θ) + (1−Di) log(1− P (Zi, θ))} ,

and the estimated propensity score for the b-th bootstrap as

P̂ b
i = P (Zi, θ̂

b) (A.9)
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We define the weighted bootstrapped estimators for m1(y, ry, p, rp, θ0), m0(y, ry, p, rp, θ0) and

w(p, rp, θ0) be

m̂b
1(y, ry, p, rp, θ̂

b) =
1

n

n∑
i=1

W b
i ·m1i(y, ry, p, rp, θ̂

b)
/ 1

n

n∑
i=1

W b
i ,

m̂b
0(y, ry, p, rp, θ̂

b) =
1

n

n∑
i=1

W b
i ·m0i(y, ry, p, rp, θ̂

b)
/ 1

n

n∑
i=1

W b
i ,

ŵb(p, rp, θ̂
b) =

1

n

n∑
i=1

W b
i · wi(p, rp, θ̂

b)
/ 1

n

n∑
i=1

W b
i ,

Finally, for a given ℓ = (y, ry, p1, p2, rp)
′, we can construct ν̂bd(ℓ) for the b-th bootstrap iteration

ν̂b1(ℓ) = m̂b
1(y, ry, p2, rp, θ̂) · ŵb(p1, rp, θ̂

b)− m̂b
1(y, ry, p1, rp, θ̂

b) · ŵb(p2, rp, θ̂
b), (A.10)

ν̂b0(ℓ) = m̂b
0(y, ry, p2, rp, θ̂

b) · ŵb(p1, rp, θ̂
b)− m̂b

0(y, ry, p1, rp, θ̂
b) · ŵb(p2, rp, θ̂

b). (A.11)

B Proof of Main Results

B.1 Proof of Theorem 1

Proof. Theorem 1-(i) is a direct application of Heckman and Vytlacil (2005)’s testable impli-

cations where g(Y ) = 1{Y ∈ (y, y′]} for y ≤ y′. We focus on part (ii).

We define some notation. Let L(P) be the set of limit points of P, Lo(P) be a set of

interior point of P, and C(P) be the closure of P. Furthermore, let I(P) = C(P)/Lo(P) be the

complement of Lo(P) in the closure of P. So I(P) also contains isolation points. Note that Lo(P)

can be written as a union of countable or finite exclusive open intervals: Lo(P) = ∪J
j=1(aj , bj),

where (aj , bj) ⊆ P, bj < aj+1, and J can be infinity. Let Ω(P) be a collection of intervals

belonging to (0, 1] defined as follows:

Ω(P) ≡
{
(p, p′] : p, p′ ∈ I(P) ∪ {0, 1} and (p, p′) ∩ P = ∅

}
.

So the interior of each interval does not intersect with P. Ω(P) contains a generic element (ck, dk],

where ck, dk ∈ I(P), dk ≤ ck+1, k = 1, 2, · · · ,K with K possibly equals to ∞, depending on

how many isolation points there are in P. Note that with above notation, for any v ∈ (0, 1],

v must belongs to one of the following categories: (i) an element of Lo(P) so that v ∈ (aj , bj)

for some j, (ii) v ∈ L(P)/Lo(P), and (iii) there exist an integer k such that v ∈ (ck, dk]. The

following figure illustrates the partition of the unit interval.
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Figure 7: An illustration: P = {p1, p2, p5} ∪ [p3, p4] ∪ [p6, p7], Lo(P) = (p3, p4) ∪ (p6, p7),
and Ω(P) = {(0, p1], (p1, p2], (p4, p5], (p5, p6], (p7, 1]}.

We will assume that P(y < Y ≤ y′, D = 1|P = p) and P(y < Y ≤ y′, D = 0|P = p) are

continuously differentiable over Lo as a regularity condition under which the local instrumental

variable (LIV) estimand is well defined.

First, we construct Ṽ and D̃ as follows:

P(Ṽ ≤ t|P = p) = t,∀(t, p) ∈ [0, 1]× P, and D̃ = 1{P (Z) ≥ Ṽ }.

By construction, Assumption 2.4 is satisfied. Next, we propose the following distribution for

Ỹ1|Ṽ , P . For any arbitrary p ∈ P and v ∈ (0, 1], we define

P(Ỹ1 ≤ y|Ṽ = v, P = p) =


∂
∂tP(Y ≤ y,D = 1|P = t)|t=v if v ∈ Lo(P)

limṽ→v
∂
∂tP(Y ≤ y,D = 1|P = t)|t=ṽ if v ∈ L(P)/Lo(P)

P(Y≤y,D=1|P=dk)−P(Y≤y,D=1|P=ck)
dk−ck

if v /∈ L(P ) but v ∈ (ck, dk] ∈ Ω(P).

P(Ỹ0 ≤ y|Ṽ = v, P = p) =


− ∂

∂vP(Y ≤ y,D = 0|P = t)|t=v if v ∈ Lo(P)

− limṽ→v
∂
∂vP(Y ≤ y,D = 0|P = t)|t=ṽ if v ∈ Lo(P)

P(Y≤y,D=0|P=ck)−P(Y≤y,D=0|P=dk)
dk−ck

if v /∈ Lo(P ) but v ∈ (ck, dk] ∈ Ω(P).

Note that the conditioning on Ṽ = v and P = p, the distribution of Ỹ1 does not depend on p.

Hence, Assumption 2.1 is satisfied by construction.

We now show that the distribution function constructed above is well defined. We focus on

P(Ỹ1 ≤ y|Ṽ = v, P = p) and the verification for P(Ỹ0 ≤ y|Ṽ = v, P = p) is analogous. Let y and

y be the lower and upper bounds of the support of Y , respectively.

1. P(Ỹ1 < y− ϵ|Ṽ = v, P = p) = 0 for all v ∈ [0, 1] and for any arbitrarily small ϵ > 0. To see
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this, suppose v /∈ L(P), then there exists (ck, dk] ∈ Ω(P) such that v ∈ (ck, dk], therefore,

P(Ỹ1 ≤ y − ϵ|Ṽ = v, P = p)

=
P(Y ≤ y − ϵ,D = 1|P = dk)− P(Y ≤ y − ϵ,D = 1|P = ck)

dk − ck
=

0− 0

dk − ck
= 0.

On the other hand, if v ∈ Lo(P), then P(Y ≤ y − ϵ,D = 1|P = ṽ) = 0 for all ṽ in a

small neighborhood of v, which implies ∂
∂vP(Y ≤ y − ϵ,D = 1|P = v) = 0. The case that

v ∈ Lo(P) follows straightforwardly.

2. P(Ỹ1 ≤ y|Ṽ = v, P = p) = 1. First, if v ∈ Lo(P), then

P(Y ≤ y,D = 1|P = v) = P(D = 1|P = v) = v ⇒ ∂

∂v
P(Y ≤ y,D = 1|P = v) = 1.

On the other hand, if v /∈ L(P), then

P(Ỹ1 ≤ y|Ṽ = v, P = p) =
P(Y ≤ y,D = 1|P = dk)− P(Y ≤ y,D = 1|P = ck)

p′ − p
=

dk − ck
dk − ck

= 1.

3. P(Ỹ1 ≤ y|Ṽ = v, P = p) is nondecreasing in y. For y < y′ we have

P(Ỹ1 ≤ y′|Ṽ = v, P = p)− P(Ỹ1 ≤ y|Ṽ = v, P = p)

=


∂
∂tP(y < Y ≤ y′, D = 1|P = t)|t=v ≥ 0 if v ∈ Lo(P),

limṽ→v
∂
∂tP(y < Y ≤ y,D = 1|P = t)|t=ṽ ≥ 0 if v ∈ L(P)/Lo(P)

P(y<Y≤y′,D=1|P=dk)−P(y<Y≤y′,D=1|P=ck)
dk−ck

≥ 0 if v /∈ Lo(P ) but v ∈ [ck, dk] ∈ Ω(P),

where the last inequalities hold whenever the testable implications hold, i.e. P(y < Y ≤
y′, D = 1|P = p) is a non-decreasing function for all p ∈ P and all y < y′, and by the

continuous differentiability of P(y < Y ≤ y′, D = 1|P = p) over L(P).

Finally, we show that (Ṽ , Ỹd, P (Z)), d ∈ {0, 1} is observationally equivalent to (V, Yd, P (Z))

d ∈ {0, 1}. For this, we show that the conditioning distribution of (Ỹ , D̃) given P (Z) is the

same as the conditioning of (Y,D) given P (Z). Take an arbitrary p ∈ P.

Suppose first p /∈ Lo(P), then (0, p] can be expressed as unions of exclusive intervals(
∪J∗
j=1(aj , bj)

)
∪
(
∪K∗
k=1(ck, dk]

)
for some J∗ and K∗, where (aj , bj)s are connected subsets of
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P. Therefore,

P(Ỹ ≤ y, D̃ = 1|P = p) = P(Ỹ1 ≤ y, Ṽ ≤ p|P = p) =

∫ p

0
P(Ỹ1 ≤ y|Ṽ = v, P = p)dv

=
J∗∑
j=1

∫ bj

aj

P(Ỹ1 ≤ y|Ṽ = v, P = p)dv +
K∗∑
k=1

∫ dk

ck

P(Ỹ1 ≤ y|Ṽ = v, P = p)dv

=
J∗∑
j=1

(P(Y ≤ y,D = 1|P = bj)− P(Y ≤ y,D = 1|P = aj))

+
K∗∑
k=1

(P(Y ≤ y,D = 1|P = dk)− P(Y ≤ y,D = 1|P = ck))

= P(Y ≤ y,D = 1|P = p)− P(Y ≤ y,D = 1|P = 0) = P(Y ≤ y,D = 1|P = p),

where the first equality is by construction that Ṽ satisfies Assumption 2.4, the third equality

holds because (0, p] can be expressed as unions of exclusive intervals
(
∪J∗
j=1(aj , bj)

)
∪
(
∪K∗
k=1(ck, dk]

)
,

the fourth equality is obtained by inserting the constructed counterfactural distributions, and

the last one holds because P(Y ≤ y,D = 1|P = 0) = 0.

Suppose that p ∈ (aj∗ , bj∗) ⊆ L0(P) for some j∗, then the right hand side equals to

P(Ỹ ≤ y, D̃ = 1|P = p) = P(Ỹ1 ≤ y, Ṽ ≤ p|P = p) =

∫ p

0
P(Ỹ1 ≤ y|Ṽ = v, P = p)dv

=

∫ aj∗

0
P(Ỹ1 ≤ y|Ṽ = v, P = p)dv +

∫ p

aj∗
P(Ỹ1 ≤ y|Ṽ = v, P = p)dv

= P(Y ≤ y,D = 1|P = aj∗) +

∫ p

aj∗

∂

∂v
P(Y ≤ y,D = 1|P = v)dv

= P(Y ≤ y,D = 1|P = aj∗) + P(Y ≤ y,D = 1|P = p)− P(Y ≤ y,D = 1|P = aj∗)

= P(Y ≤ y,D = 1|P = p),

where the
∫ aj∗
0 P(Ỹ1 ≤ y|Ṽ = v, P = p)dv = P(Y ≤ y,D = 1|P = aj∗) holds by the above

argument and the fifth equality holds by inserting the constructed counterfactural distributions.

This completes the proof.□□□

B.2 Proof of Theorem 2

We begin by listing a few regularity conditions for the proof of Theorem 2. Again, when Z is the

judge’s identity, we use the frequency estimator P̂i =
∑n

k=1 Dk1{Zk=Zi}∑n
k=1 1{Zk=Zi} for the propensity score.

For its root-n-consistency, we only need
∑n

i=1 1{Zk = j} → ∞ for each judge j, and i.i.d. of
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(Yi, Di, Xi) among defendants conditioning on judges. So Assumptions B.1 to B.3 and B.5 are

mostly for the case of continuous instrument Z.

Assumption B.1 The observations {(Yi, Di, Zi, Xi)}ni=1 are i.i.d. across i.

For notational simplicity, Assumption B.1 assumes that all cases are mutually independent,

which is equivalent to assuming that each judge handles exactly one case. All inference results

can be extended straightforwardly to settings where judges handle multiple cases (with varying

case counts across judges) by accounting for clustering at the judge level.

Assumption B.2 We impose the following smoothness conditions:

1. The conditional density of (Y,D) given P (Z, θ0) = p, denoted by fY,D|P (y, d|p), is Lipschitz
continuous both in p on P and in y on Y for d = 0, 1.

2. For all z ∈ Z, P (z, θ) is continuously differentiable in θ at θ0 with bounded derivatives.

Note that Assumption B.2-(1) does not exclude the case of discrete propensity score. When

P is discrete and P contains finite many distinguished elements, any convergent sequence in P
must be a constant sequence eventually, and in that case Assumption B.2-(1) holds automatically.

Assumption B.2-(1) implies that the functions md and ω, defined in Equations (A.2) to (A.4),

are continuous functions of ℓ. Assumption B.2-(2) implies that the class of functions {1(p ≤
P (Z, θ) ≤ p+ rp) : θ ∈ Θ, p ∈ [0, 1], rp ∈ [0, 1]} is a Vapnik-Chervonenkis (VC) class of function.

Assumption B.3 The parameter space Θ for θ0 is compact, and θ0 is in the interior of Θ.

The estimator θ̂ admits an influence function of the following form,

√
n(θ̂ − θ0) =

1√
n

n∑
i=1

s(Di, Zi, θ0) + op(1), (B.1)

where s(·, ·, ·) is measurable, satisfying E[s(Di, Zi, θ0)] = 0, E[supθ |s(Di, Zi, θ)|] < ∞, and

V (supθ |s(Di, Zi, θ)|) < ∞.

Assumption B.3 is satisfied for common maximum likelihood estimators and parametric binary

response models. For example, if one estimates θ0 by Probit model Di = 1[Z ′
iθ0 ≥ Vi], with

Vi ∼ N(0, 1), then

s(Di, Zi, θ0) =
ϕ((2Di − 1)Z ′

iθ0)

Φ((2Di − 1)Z ′
iθ0)

Zi.

If the Logit model is used, then

s(Di, Zi, θ0) =

(
Di −

exp(Z ′
iθ0)

1 + exp(Z ′
iθ0)

)
Zi.
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Assumption B.4 {Wi}ni=1 is a sequence of i.i.d. pseudo random variables that is independent

of the sample path with E[Wi] = 1 and V ar[Wi] = 1.

Assumption B.5 The estimator θ̂b satisfies that

√
n(θ̂b − θ̂) =

1√
n

n∑
i=1

(Wi − 1) · s(Di, Zi, θ0) + op(1), (B.2)

where sθ(·) is the same as in Assumption B.3.

Assumption B.5 is satisfied under our weighted bootstrap procedure.

The proof of Theorem Theorem 2 follows from the same arguments as Theorems 5.1 and 5.2

of Hsu (2017) once Lemmas D.1 to D.4 are established, as detailed in Appendix D.1.

B.3 Proofs for Proposition 5.1

Part (a). Note that,

Cov(Y, P (Z)) =Cov
(
Ỹ1D + Ỹ0(1−D), P (Z)

)
=Cov

(
α̃D + Ỹ0, P (Z)

)
=Cov

(
αD + (α̃− α)D + Ỹ0, P (Z)

)
=Cov(αD,P (Z)) + Cov

(
(α̃− α)D + Ỹ0, P (Z)

)
.

The first term on the right hand side can be written as

Cov(αD,P (Z)) =E [αD(P (Z)− p)]

=
J∑

z=1

E [αDz(pz − p) | Z = z]λz

=E

[
α

J∑
z=1

Dz(pz − p)λz

]
= E [αω] ,

where the conditioning variable Z = z is removed by the independence Assumption 2.1. This

shows that

Cov(Y, P (Z)) = E [αω] + Cov
(
(α̃− α)D + Ỹ0, P (Z)

)
.

Next, it is easy to verify that

Cov(D,P (Z)) = E [D(P (Z)− p)] = E [ω] .
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Finally, the proof is completed by taking the ratio of Cov(Y, P (Z)) and Cov(D,P (Z)) (which is

possible as long as the instrument is relevant).

Part (b).

Cov
(
(α̃− α)D + Ỹ0, P (Z)

)
=E

[(
(α̃− α)D + Ỹ0

)
(P (Z)− p)

]
=

J∑
z=1

E [((αz − α)Dz + Y0z) (pz − p) | Z = z]λz

=
J∑

z=1

E [λz(pz − p) ((αz − α)Dz + Y0z)]

=
J∑

z=1

E [λz(pz − p) (Y1zDz + Y0z(1−Dz)− αDz)]

=
J∑

z=1

E
[
λz(pz − p)

(
Y1zDz + Y0z(1−Dz)−

(
Ȳ1Dz + Ȳ0(1−Dz)− Ȳ0

))]
=

J∑
z=1

E
[
λz(pz − p)

(
(Y1z − Ȳ1)Dz + (Y0z − Ȳ0)(1−Dz) + Ȳ0

)]
=E

[
J∑

z=1

λz(pz − p)
(
(Y1z − Ȳ1)Dz + (Y0z − Ȳ0)(1−Dz)

)]
,

where the third equality is by the independenceAssumption 2.1, the fifth is by substituting for

α = Ȳ1 − Ȳ0, and the last equality holds because E
[∑J

z=1 λz(pz − p)Ȳ0

]
= 0. □□□

B.4 Detailed derivation for Example 2.1

For the ease of reading, we restate the DGP below. Consider the potential outcome model:Y = Y1D + Y0(1−D),

D = 1 {P ≥ V } .

We assume V is independent of (Y1, Y0, P ). However, (Y1, Y0) and P are dependent:Y1|P = p̃ ∼ degenerate at 1 , if p̃ < 1
2

Y1|P = p̃ ∼ Bernoulli(p̃), if p̃ ≥ 1
2Y0|P = p̃ ∼ degenerate at 0 , if p̃ < 1
2

Y0|P = p̃ ∼ Bernoulli(p̃), if p̃ ≥ 1
2
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We first check inequality (2.3). Let p′ > p > 1
2 , and use the condition that V is independent

of (Y1, Y0, P ), we have

W (g(Y D), p, p′) =
E[Y D|P = p′]− E[Y D|P = p]

p′ − p

=
E[Y1|P = p′]p′ − E[Y1|P = p]p

p′ − p
=

p′2 − p2

p′ − p
= p′ + p > 1 ≡ Ug.

Therefore, condition (2.3) is violated.

Next, we check condition (2.2). Based on the relative positoin of p′, p, and 1
2 , we verify it

by four cases.

(i) Suppose first p′ > 1
2 > p,

W (g(Y ), p, p′) =
E[Y1D + (1−D)Y0|P = p′]− E[Y1D + (1−D)Y0|P = p]

p′ − p

=
E[Y1|P = p′]p′ − E[Y1|P = p]p+ E[Y0|P = p′](1− p′)− E[Y0|P = p](1− p)

p′ − p

=
p′2 − p+ E[Y0|P = p′](1− p′)− E[Y0|P = p](1− p)

p′ − p

=
p′2 − p+ p′(1− p′)

p′ − p
= 1 = Ug − Lg,

where E[Y0|P = p] = 0 because Y0 is degenerate at 0 when conditioning on P = p < 1
2 , and

E[Y0|P = p′] = p′ because Y0 ∼ Bernoulli(p′) when conditioning on P = p′ ≥ 1
2 .

(ii) Suppose p > 1
2 > p′,

W (g(Y ), p, p′) =
E[Y1|P = p′]p′ − E[Y1|P = p]p+ E[Y0|P = p′](1− p′)− E[Y0|P = p](1− p)

p′ − p

=
p′ − p2 + E[Y0|P = p′](1− p′)− E[Y0|P = p](1− p)

p′ − p

=
p′ − p2 − p(1− p)

p′ − p
= 1 = Ug − Lg.

(iii) If 1
2 > p′ > p, then

W (g(Y ), p, p′) =
E[Y1|P = p′]p′ − E[Y1|P = p]p+ E[Y0|P = p′](1− p′)− E[Y0|P = p](1− p)

p′ − p

=
p′ − p

p′ − p
= 1 = Ug − Lg,

because in this case Y1 and Y0 are degenerate at 1 and 0, respectively.
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(iv) If p′ > p > 1
2 , then

W (g(Y ), p, p′) =
E[Y1|P = p′]p′ − E[Y1|P = p]p+ E[Y0|P = p′](1− p′)− E[Y0|P = p](1− p)

p′ − p

=
p′2 − p2 + p′(1− p′)− p(1− p)

p′ − p
=

p′ − p

p′ − p
= 1 = Ug − Lg,

because in this case both Y1 and Y0 follows Bernoulli distribution.

Combining (i)–(iv), we can conclude that condition (2.2) always holds and has no power to

detect the violation.

On the other hand, our testable implication can capture such a violation. Consider

E[Y D|P = p] = E[Y1|P = p]p =

p if p < 1
2 ,

p2 if p ≥ 1
2 .

.

It is apparent that E[Y D|P = p] is not a monotone function of p, and therefore violates our

testable implication.

C A Finite sample test

This appendix section considers the case with a finite number of J judges, j = 1, 2, · · · , J , and
judge j handles a finite number of nj defendants. For notation simplicity, we assume nj =

nj′ = n∗, so that the total number of defendants n = Jn∗, but our test can be straightforwardly

extended to allow for heterogeneous nj . For defendant i, let Zi ∈ {1, 2, · · · , J} be the identity

of the judge who handles his/her case. Let pj be the propensity score or stringency measure of

judge j, defined as

pj = P (Di = 1|Zi = j)

We assume a judge treats all his/her defendants independently. In this section, we consider the

case where Y is a binary variable, as in Frandsen, Lefgren, and Leslie (2023). Let W 1
i = YiDi

and W 0
i = −Yi(1−Di), and define q1j = E[W 1

i |Zi = j] = P(W 1
i = 1|Zi = j) and q0j = E[W 0

i |Zi =

j] = −P(W 0
i = −1|Zi = j). Note that because Di ≥ W 1

i ≥ 0 and 0 ≥ W 0
i ≥ (Di − 1), we have

0 ≤ q1j ≤ pj and 0 ≤ −q0j ≤ pj .

The judge leniency design would imply that (pj − pj′)(q
d
j − qdj′) ≥ 0 for all j, j′ ∈ J and d ∈

{0, 1}, where J ≡ {1, 2, · · · , J}. With this notation, we rewrite the null hypothesis as

H0 : (pj − pj′)(q
d
j − qdj′) ≥ 0 for all j, j′ ∈ J and d ∈ {0, 1} (C.1)
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To implement a test for H0, we first consider a test ϕj,j′ for the null hypothesis of a given

pair (j, j′) at α̃ level, that is,

P(ϕj,j′ = 1|H0) ≤ α̃,

Then, we can define the overall test ϕ such that ϕ = 0 if ϕj,j′ = 0 for all pairs (j, j′), and ϕ = 1

otherwise. That is, we reject H0 if we reject at least one out of J(J − 1)/2 pairs. If we choose

α̃ = 2α
J(J−1) , then, we can ensure that

P(ϕ = 1|H0) = P(∪j>j′{ϕj,j′ = 1}|H0) ≤
∑
j>j′

P(ϕj,j′ = 1|H0) ≤
J(J − 1)

2
α̃ = α.

Now we construct ϕj,j′ for the pair (j, j′). Define δp = pj − pj′ , δ
d
q = qdj − qdj′ . The relevant

null hypothesis is Hj,j′

0 : δpδ
d
q ≥ 0 for d = 0, 1. The idea of constructing ϕj,j′ is as follows. We

first construct the least favorable confidence interval for δp and δdq , d = 0, 1. Then, suppose we

observe that the upper bound of the confidence interval for δp is below zero, while the lower

bound of the confidence interval for δdq is above zero. In that case, we consider this as evidence

against the null hypothesis that δp and δdq have to have the same sign. Similarly, we also reject

when the lower bound of the confidence interval for δp is above zero while the upper bound for

δdq is below zero.

Let ˜̃α = α̃
4 . Let δ̂p = p̂j − p̂j′ and δ̂dq = q̂dj − q̂dj′ be estimators for δp and δdq , respectively,

where

p̂j =

∑N
i=1Di1{Zi = j}

n∗ , q̂dj =

∑N
i=1W

d
i 1{Zi = j}
n∗ .

Let ĉp be the smallest support point of δ̂p such that P(δ̂p > ĉp|pj = pj′ = 0.5) ≤ ˜̃α. Note

that the distribution of δ̂p is symmetric around zero under pj = pj′ = 0.5 because defendants

handled by judges j and j′ are independent, then we would know that −ĉp is the largest support

point of δ̂p such that P(δ̂p < −ĉp|pj = pj′ = 0.5) ≤ ˜̃α. Clearly, ĉp is known and can be tabulated

for each n and ˜̃α by simulation (When nj and nj′ are different, we can simulate the ˜̃α and 1− ˜̃α

quantiles too). Another observation is that for all ˜̃α < 0.5,

P(δ̂p < −ĉp|pj = pj′ = p) ≤ P(δ̂p < −ĉp|pj = pj′ = 0.5) = ˜̃α, ∀p ∈ (0, 1).

That is, the distribution of δ̂p is most dispersed when pj = pj′ = 0.5. For instance, if pj = pj′ = 1,

then δ̂p ≡ 0 is degenerate. Let ĈLp,U = δ̂p + ĉp and ĈLp,L = δ̂p − ĉp, then define

ĈSp ≡ [ĈSp,L, ĈSp,U ]. (C.2)
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It is easy to verify that ĈSp is a valid 1− 2˜̃α level confidence set for δp among the models with

pj = pj′ .

Similarly, we define ĉdq be the largest support point of δ̂dq such that P(δ̂dq > ĉdq |pj = pj′ =

0.5) ≤ ˜̃α, and define its 1− 2˜̃α level confidence set as

ĈS
d

q ≡ [ĈS
d

q,L, ĈS
d

q,U ], (C.3)

where ĈS
d

q,L = δ̂dq − ĉdq and ĈS
d

q,U = δ̂dq + ĉdq .

Now we are ready to define ϕj,j′ . We reject Hj,j′

0 when any of the following events happen:

{ĈSp,U < 0, ĈS
1

q,L > 0}, {ĈSp,U < 0, ĈS
0

q,L > 0}, {ĈSp,L > 0, ĈS
1

q,U < 0}, {ĈSp,L > 0, ĈS
1

q,U < 0}

We first verify that P(ϕj,j′ = 1|Hj,j′

0 ) ≤ 4˜̃α = α̃. Note that,

P(ϕj,j′ = 1|Hj,j′

0 ) ≤ P({ĈSp,U < 0, ĈS
1

q,L > 0}|Hj,j′

0 ) + P({ĈSp,U < 0, ĈS
0

q,L > 0}|Hj,j′

0 )

+ P({ĈSp,L > 0, ĈS
1

q,U < 0}|Hj,j′

0 ) + P({ĈSp,L > 0, ĈS
1

q,U < 0}|Hj,j′

0 ). (C.4)

Consider the first term on the right-hand side of Equation (C.4). We have,

P({ĈSp,U < 0, ĈS
1

q,L > 0}|Hj,j′

0 ) ≤ min{P({ĈSp,U < 0}|Hj,j′

0 ),P(ĈS
1

q,L > 0}|Hj,j′

0 )}. (C.5)

If Hj,j′

0 is such that δp > 0 and δ1q > 0, then,

min{P({ĈSp,U < 0}|Hj,j′

0 ),P(ĈS
1

q,L > 0}|Hj,j′

0 )} ≤ P({ĈSp,U < 0}|δp > 0, δ1q > 0)

≤ P({ĈSp,U < 0}|δp = 0) = P({δ̂p < −ĉp}|δp = 0) = ˜̃α. (C.6)

where the first equality hold trivially, the first inequality and second equality are by the prop-

erties of the confidence interval ĈSp.

Similarly, if Hj,j′

0 is such that δp < 0 and δ1q < 0, then,

min{P({ĈSp,U < 0}|δp < 0, δ1q < 0),P(ĈS
1

q,L > 0}|Hj,j′

0 )} ≤ P({ĈS
1

q,L > 0}|δp < 0, δ1q < 0)

≤ P({ĈS
1

q,L > 0}|δ1q = 0) = P({δ̂q > ĉ1q}|δ1q = 0) = ˜̃α. (C.7)

Therefore, we can conclude that the first right-hand side term of Equation (C.4) satisfies

P({ĈSp,U < 0, ĈS
1

q,L > 0}|Hj,j′

0 ) ≤ ˜̃α.
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Applying the same derivations to the remaining three right-hand side terms, we can conclude

that

P(ϕj,j′ = 1|Hj,j′

0 ) ≤ 4˜̃α = α̃.

We summarize the procedure below.

Algorithm C.1 Finte Sample Test.

1. Let J be the number of judges and α be the prechosen significance level. Set α̃ = 2α
J(J−1)

and ˜̃α = α̃
4 .

2. For each judge j, calculate δ̂p = p̂j − p̂j′, and δ̂dq = q̂dj − q̂dj′, where (p̂j , q̂
d
j ) are sample

frequency estimators for (pj , q
d
j ).

3. Let B be a large integer (can be millions). For each b = 1, 2, · · · , B, draw two independent

random samples of Bernoulli(0.5) random variables, each with sample size n∗. Calculate

∆b as the difference of the average of the two samples for iteration b. Let ĉ be the smallest

point from {−1,−n∗−1
n∗ , · · · ,− 1

n∗ , 0,
1
n∗ , · · · , n

∗−1
n∗ , 1} such that 1

B

∑B
b=1 1{∆b > ĉ}) ≤ ˜̃α.

4. Set ĉp = ĉ1q = ĉ0q = ĉ.

5. Calculate the confidence sets according to Equations (C.2) and (C.3).

6. For a given pair (j, j′), set ϕj,j′ = 1 if any of the following events happen: {ĈSp,U <

0, ĈS
1

q,L > 0}, {ĈSp,U < 0, ĈS
0

q,L > 0}, {ĈSp,L > 0, ĈS
1

q,U < 0}, {ĈSp,L > 0, ĈS
1

q,U < 0}.

7. Reject the null hypothesis if ϕj,j′ = 1 for at least one pair (j, j′).

We report the rejection probability of the finite sample for the design in Section 4.1.2, where

we set δ3 = −0.5. We can see that the power is lower than the asymptotic test that we reported

in Table 1, particularly when the violation is relatively mild. This is not surprising because the

asymptotic test is based on the assumption that the propensity score is consistently estimated,

and therefore, we can consistently estimate the ranking of the propensity score. In contrast, for

the finite sample test, the ranking of the propensity score is unknown. Another loss of power

is that we only consider one type of interval that 1{Y ≥ 0.5} here, whereas the asymptotic

test considers all possible intervals of the form 1{y ≤ Y < y′}. However, we still observe that

for each given sample size, the rejection frequencies increase as the magnitude of the violation

increases, as well as with the number of cases per judge.
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Figure 8: Finite Sample Test Results

To conclude this section, we want to emphasize that while there is a potential loss of power

for our test, we trade this off for a substantial computational advantage. As discussed in Frand-

sen, Lefgren, and Leslie (2023, Supplementary material, page 9), implementing a finite sample

test can be quite computationally challenging when involving large-dimensional nonlinear op-

timization.15 On the contrary, our test requires little more than drawing Bernoulli random

numbers and is very easy to implement. It thus serves as a useful complement to the existing

literature.

D Lemmas and Intermediary Results

D.1 Lemmas for the proof of Theorem 2

This section collects useful Lemmas, intermediary results, and additional assumptions for estab-

lishing the asymptotic results in Theorem 2.

15For this reason, we do not offer a simulation comparison with FLL’s finite sample test, for which FLL
does not provide a complete simulation study either.
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Lemma D.1 Suppose Assumptions B.2 and B.3 are satisfied, then uniformly in ℓ ∈ L,

√
n(m̂1(y, ry, p, rp, θ̂)−m1(y, ry, p, rp, θ0))

=
1√
n

n∑
i=1

ϕm1,i(y, ry, p, rp, θ0) + op(1)

≡ 1√
n

n∑
i=1

(m1,i(y, ry, p, rp, θ0)−m1(y, ry, p, rp, θ0) + ▽θm1(y, ry, p, rp, θ0) · s(Di, Zi, θ0)) + op(1).

(D.1)

√
n(m̂0(y, ry, p, rp, θ̂)−m0(y, ry, p, rp, θ0))

=
1√
n

n∑
i=1

ϕm0,i(y, ry, p, rp, θ0) + op(1)

≡ 1√
n

n∑
i=1

(m0,i(y, ry, p, rp, θ0)−m0(y, ry, p, rp, θ0) + ▽θm0(y, ry, p, rp, θ0) · s(Di, Zi, θ0)) + op(1),

(D.2)

√
n(ŵ(p, rp, θ̂)− w(p, rp, θ0))

=
1√
n

n∑
i=1

ϕw,i(p, rp, θ0) + op(1)

≡ 1√
n

n∑
i=1

(wi(p, rp, θ0)− w(p, rp, θ0) + ▽θw(p, rp, θ0) · s(Di, Zi, θ0)) + op(1) (D.3)

where functions md and w are defined in Equations (A.2) to (A.4) and

m1i(y, ry, p, rp, θ) = Di1(y ≤ Yi ≤ y + ry)1(p ≤ P (Zi, θ) ≤ p+ rp),

m0i(y, ry, p, rp, θ) = (Di − 1)1(y ≤ Yi ≤ y + ry)1(p ≤ P (Zi, θ) ≤ p+ rp),

wi(p, rp, θ) = 1(p ≤ P (Zi, θ) ≤ p+ rp).

Proof. Let fP (p) denote the density function of P (Z; θ0). Following Hsu and Lieli (2021), we

calculate the derivatives for md(y, ry, p, rp, ·) and w(p, rp, ·) as:

▽θm1(y, ry, p, rp, θ0) = E[D1(y ≤ Y ≤ y + ry)|P (Z, θ0) = p] · fP (p)E[▽θP (Z, θ0)|P (Z, θ0) = p]

− E[D1(y ≤ Y ≤ y + ry)|P (Z, θ0) = p+ rp] · fP (p+ rp)E[▽θP (Z, θ0)|P (Z, θ0) = p+ rp],
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▽θm0(y, ry, p, rp, θ0) = E[(D−1)1(y ≤ Y ≤ y+ry)|P (Z, θ0) = p]·fP (p)E[▽θP (Z, θ0)|P (Z, θ0) = p]

− E[(D − 1)1(y ≤ Y ≤ y + ry)|P (Z, θ0) = p+ rp] · fP (p+ rp)E[▽θP (Z, θ0)|P (Z, θ0) = p+ rp],

▽θw(p, rp, θ0) = fP (p)E[▽θP (Z, θ0)|P (Z, θ0) = p]−fP (p+rp)E[▽θP (Z, θ0)|P (Z, θ0) = p+rp].

Now we prove Equation (D.1), the results for Equations (D.2) and (D.3) are similar. Note

that

√
n(m̂1(y, ry, p, rp, θ̂)−m1(y, ry, p, rp, θ0))

=
√
n(m̂1(y, ry, p, rp, θ̂)−m1(y, ry, p, rp, θ̂)) +

√
n(m1(y, ry, p, rp, θ̂)−m1(y, ry, p, rp, θ0))

=
√
n(m̂1(y, ry, p, rp, θ̂)−m1(y, ry, p, rp, θ̂)) + ▽θm1(y, ry, p, rp, θ0)

′√n(θ̂ − θ0) + o(
√
n∥θ̂ − θ0∥)

=
√
n(m̂1(y, ry, p, rp, θ̂)−m1(y, ry, p, rp, θ̂)) +

1√
n

n∑
i=1

▽θm1(y, ry, p, rp, θ0)s(Di, Zi, θ0) + op(1)

(D.4)

where the second equality holds because m1(ℓ, θ) is continuously differentiable in θ under As-

sumption B.2-(2), and the third equality is due to Assumption B.3.

Let Ĝm1(θ, ℓ) ≡
√
n(m̂1(y, ry, p, rp, θ)−m1(y, ry, p, rp, θ)), θ ∈ Θ, ℓ ∈ L. It remains to show

that supℓ∈L |Ĝm1(θ̂, ℓ)− Ĝm1(θ0, ℓ)| = op(1).

By Assumption B.2-(ii), the class of functions {1(p ≤ P (Z, θ) ≤ p + rp) : θ ∈ Θ, p ∈
[0, 1], rp ∈ [0, 1]} is a Vapnik-Chervonenkis (VC) class of function. Therefore, the class of

functions {1{y ≤ Y ≤ y + ry} × 1(p ≤ P (Z, θ) : θ ∈ Θ, p ∈ [0, 1], rp ∈ [0, 1], ry ∈ [0, 1]} is also

VC class. Hence, the process Ĝm1 is stochastically equicontinuous with respect to (θ, ℓ). Note

θ̂
p→ θ0, then there exist δn ↓ 0 such that with probability approaching one, (θ̂, ℓ) ∈ B((θ0, ℓ), δn),

where B((θ0, ℓ), δn) is a ball in Θ× L centered at (θ0, ℓ) with radius δn. Therefore,

sup
ℓ∈L

|
√
n(m̂1(y, ry, p, rp, θ̂)−m1(y, ry, p, rp, θ̂))−

√
n(m̂1(y, ry, p, rp, θ0)−m1(y, ry, p, rp, θ0))|

=sup
ℓ∈L

|Ĝm1(θ̂, ℓ)− Ĝm1(θ0, ℓ)|

≤ sup
θ0∈Θ,ℓ∈L

sup
(θ′,ℓ′)∈B((θ0,ℓ),δn)

|Ĝm1(θ
′, ℓ′)− Ĝm1(θ0, ℓ)| = op(1). (D.5)

where the last equality is by the stochastic equicontinuity of the process Ĝm1. Combine both

Equations (D.4) and (D.5), the result then follows. □□□
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Lemma D.2 Suppose Assumptions 2.1 to 2.4, B.2 and B.3 are satisfied, then uniform in ℓ,

√
n(ν̂1(y, ry, p1, p2, rp, θ̂)− ν1(y, ry, p1, p2, rp, θ0)) =

1√
n

n∑
i=1

ϕν1,i(y, ry, p1, p2, rp, θ0) + op(1),

(D.6)

√
n(ν̂0(y, ry, p1, p2, rp, θ̂)− ν0(y, ry, p1, p2, rp, θ0)) =

1√
n

n∑
i=1

ϕν0,i(y, ry, p1, p2, rp, θ0) + op(1),

(D.7)

where

ϕν1,i(y, ry, p1, p2, rp, θ0) = w(p1, rp, θ0) · ϕm1,i(y, ry, p2, rp, θ0) +m1(y, ry, p2, rp, θ0) · ϕw,i(p1, rp, θ0)

− w(p2, rp, θ0) · ϕm1,i(y, ry, p1, rp, θ0)−m1(y, ry, p1, rp, θ0) · ϕw,i(p2, rp, θ0),

ϕν0,i(y, ry, p1, p2, , rp, θ0) = w(p1, rp, θ0) · ϕm0,i(y, ry, p2, rp, θ0) +m0(y, ry, p2, rp, θ0) · ϕw,i(p1, rp, θ0)

− w(p2, rp, θ0) · ϕm0,i(y, ry, p1, rp, θ0)−m0(y, ry, p1, rp, θ0) · ϕw,i(p2, rp, θ0).

Furthermore,

√
n(ν̂1(·, θ̂)− ν1(·, θ0)) ⇒ Φν1(·),

√
n(ν̂0(·, θ̂)− ν0(·, θ0)) ⇒ Φν0(·),

where Φν1(·) and Φν0(·) are Gaussian processes with variance-covariance kernel generated by

ϕν1(·, θ0) and ϕν0(·, θ0), respectively.
Proof. We show Equation (D.6). Equation (D.7) holds analogously. Recall

ν̂1(ℓ) = m̂1(y, ry, p2, rp, θ̂) · ŵ(p1, rp, θ̂)− m̂1(y, ry, p1, rp, θ̂) · ŵ(p2, rp, θ̂)

To save space, for generic ℓ, we write m̂1(θ̂) ≡ m̂1(ℓ, θ̂) and ŵ(θ̂) ≡ ŵ(ℓ, θ̂). Similarly, m1(θ0) ≡
m1(ℓ, θ0) and w(θ0) ≡ w(ℓ, θ0). Then,

m̂1(θ̂)ŵ(θ̂)−m1(θ0)w(θ0) = (m̂1(θ̂)−m1(θ0) +m1(θ0))(ŵ(θ̂)− w(θ0) + w(θ0))−m1(θ0)w(θ0)

=(m̂1(θ̂)−m1(θ0))w(θ0) + (ŵ(θ̂)− w(θ0))m1(θ0) + (m̂1(θ̂)−m1(θ0))(ŵ(θ̂)− w(θ0))

=(m̂1(θ̂)−m1(θ0))w(θ0) + (ŵ(θ̂)− w(θ0))m1(θ0) + op

(
1√
n

)
,

where the last equality is because m̂1(θ̂) − m1(θ0) = Op(1/
√
n) and ŵ(θ̂) − w(θ0) = Op(1/

√
n)
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by Lemma D.1. Then we have

ν̂1(ℓ)− ν1(ℓ) =w(p1, rp, θ0) · (m̂1(y, ry, p2, rp, θ̂)−m1(y, ry, p2, rp, θ0))

+m1(y, ry, p2, rp, θ0) · (ŵ(p1, rp, θ̂)− w(p1, rp, θ0))

− w(p2, rp, θ0) · (m̂1(y, ry, p1, rp, θ̂)−m1(y, ry, p1, rp, θ0))

−m1(y, ry, p1, rp, θ0) · (ŵ(p2, rp, θ̂)− w(p2, rp, θ0)) + op

(
1√
n

)
.

Equation (D.6) then follows by inserting Equations (D.1) to (D.3) to the above equation.

Finally, under Assumption B.2, each element of ▽θm1(y, ry, p, rp, θ0) is Lipschitz contin-

uous in y, ry, p, rp and it implies that {∂m1(y, ry, p, rp, θ0)/∂θj : (y, ry, p, rp) ∈ [0, 1]4} is a

VC class of functions for each j. Similarly, each element of ▽θw(p, rp, θ0) is Lipschitz contin-

uous in p, rp. It follows that {ϕm1(y, ry, p, rp, θ0) : (y, ry, p, rp) ∈ [0, 1]4}, {ϕm0(y, ry, p, rp, θ0) :

(y, ry, p, rp) ∈ [0, 1]4} and {ϕw(p, rp, θ0) : (p, rp) ∈ [0, 1]2} are all VC classes of functions. weak

convergence follows from the fact that {ϕν0(y, ry, p1, p2, , rp, θ0) : (y, ry, p1, p2, rp) ∈ [0, 1]5} and

{ϕν0(y, ry, p1, p2, , rp, θ0) : (y, ry, p1, p2, rp) ∈ [0, 1]5} are both VC classes of functions. Therefore,

we have

√
n(ν̂1(·, θ̂)− ν1(·, θ0)) ⇒ Φν1(·),

√
n(ν̂0(·, θ̂)− ν0(·, θ0)) ⇒ Φν0(·).

□□□

Lemma D.3 Suppose Assumptions 2.1 to 2.4, B.2, B.3 and B.5 are satisfied, then uniform in

ℓ over L,

√
n(ν̂b1(y, ry, p1, p2, rp, θ̂

b)− ν̂1(y, ry, p1, p2, rp, θ̂))

=
1√
n

n∑
i=1

(Wi − 1)ϕν1,i(y, ry, p1, p2, rp, θ0) + op(1), (D.8)

√
n(ν̂b0(y, ry, p1, p2, rp, θ̂

b)− ν̂0(y, ry, p1, p2, rp, θ̂))

=
1√
n

n∑
i=1

(Wi − 1)ϕν0,i(y, ry, p1, p2, rp, θ0) + op(1), (D.9)

where ϕν1,i(y, ry, p1, p2, rp, θ0) and ϕν0,i(y, ry, p1, p2, , rp, θ0) are the same as in Lemma D.2.

The proof to Lemma D.3 is similar to Lemma D.2 and is therefore omitted.

Lemma D.4 Suppose Assumptions 2.1 to 2.4, B.2, B.3 and B.5 are satisfied, then σ̂2
d(ℓ) defined

in (3.6) satisfies that for d = 0, 1, supℓ |σ̂2
d(ℓ)− σ2

d(ℓ)| = op(1).
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Proof. Recall that for a given ℓ ∈ L,

σ̂2
d(ℓ) =

n

B

B∑
b=1

(
ν̂bd(ℓ)− ν̂bd(ℓ)

)2
, where ν̂

b
d(ℓ) =

1

B

B∑
b=1

ν̂bd(ℓ).

It can be written as

σ̂2
d(ℓ) =

n

B

B∑
b=1

(
ν̂bd(ℓ)− ν̂d(ℓ)

)2
+ 2

n

B

B∑
b=1

(
ν̂bd(ℓ)− ν̂d(ℓ)

)(
ν̂d(ℓ)− ν̂bd(ℓ)

)
+

n

B

B∑
b=1

(
ν̂d(ℓ)− ν̂bd(ℓ)

)2
(D.10)

We first consider the second term on the right-hand side of Equation (D.10). Let W̄i =

1
B

∑B
b=1W

b
i , Using Lemma D.3, we know that for a given b = 1, 2, · · · , B, and uniformly over

ℓ ∈ L,

ν̂bd(ℓ)− ν̂d(ℓ) =
1

n

n∑
i=1

(W b
i − 1)ϕνd,i(ℓ, θ0) + op(1).

So it can be written as

n

B

B∑
b=1

(
ν̂bd(ℓ)− ν̂d(ℓ)

)(
ν̂d(ℓ)− ν̂bd(ℓ)

)
=

1

B

1

n

B∑
b=1

( n∑
i=1

(W b
i − 1)ϕνd,i(ℓ, θ0)

)( n∑
i=1

(W̄i − 1)ϕνd,i(ℓ, θ0)
)
+ op(1)

=
1

B

1

n

B∑
b=1

n∑
i=1

(W b
i − 1)(W̄i − 1)ϕ2

νd,i
(ℓ, θ0) +

1

B

1

n

B∑
b=1

n∑
i ̸=j

(W b
i − 1)(W̄j − 1)ϕνd,i(ℓ, θ0)ϕνd,j(ℓ, θ0) + op(1)

=
1

B2

1

n

B∑
b=1

n∑
i=1

(W b
i − 1)2ϕ2

νd,i
(ℓ, θ0) +

1

B2

1

n

B∑
b=1

B∑
b′ ̸=b

n∑
i=1

(W b
i − 1)(W b′

j − 1)ϕ2
νd,i

(ℓ, θ0)

+
1

B

1

n

B∑
b=1

n∑
i ̸=j

(W b
i − 1)(W̄j − 1)ϕνd,i(ℓ, θ0)ϕνd,j(ℓ, θ0) + op(1)

The first right-hand side term is of order 1
B and is negligible as B → ∞. The second term on

the right-hand side is negligible because E[(W b
i − 1)(W b′

i − 1)|(Y,D,Z)] = 0 as long as b ̸= b′.

The third term on the right-hand side is negligible because E[(W b
i − 1)(W b

j − 1)|(Y,D,Z)] = 0

as long as i ̸= j. For similarly reasoning, the third right-hand side term of Equation (D.10) is

also negligible as B → ∞.
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Now consider the first term on the right-hand side of Equation (D.10). Uniformly over ℓ,

n

B

B∑
b=1

(
ν̂bd(ℓ)− ν̂d(ℓ)

)2
=

1

B

1

n

B∑
b=1

( n∑
i=1

(W b
i − 1)ϕνd,i(ℓ, θ0)

)2
+ op(1)

=
1

B

1

n

B∑
b=1

n∑
i=1

(W b
i − 1)2ϕ2

νd,i
(ℓ, θ0) +

1

B

1

n

B∑
b=1

n∑
i=1

n∑
j ̸=i

(W b
i − 1)(W b

j − 1)ϕνd,i(ℓ, θ0)ϕνd,j(ℓ, θ0) + op(1).

Conditioning on the sample, because W b
i are i.i.d. across b and i, has expectation and variance

equal to one, we know E[(W b
i − 1)(W b

j − 1)|(Y,D,Z)] = 0 and E[(W b
i − 1)2|(Y,D,Z)] = 1. As

B → ∞, the right-hand side converges in probability (with respect to the distribution of {W b}Bb=1)

to 1
n

∑n
i=1 ϕ

2
νd,i

(ℓ, θ0) + op(1), which in turn converges to σ2
d(ℓ) uniformly over ℓ as n → ∞. □□□

D.2 The influence function with covariate case

In this subsection, we derive the influence function for estimating νd(ℓ) in the presence of co-

variates. First, we estimate θ0 ≡ (θ0z, θ0x) by MLE,

θ̂ = argmax
θ∈Θ

1

n

n∑
i=1

log f(Yi, Di, Zi, Xi, θ)

≡ argmax
θ∈Θ

1

n

n∑
i=1

Di logP (Zi, Xi, θ) + (1−Di) log(1− P (Zi, Xi, θ)). (D.11)

where P (z, x, θ) is parameterized and depends on (z, x) and θ ≡ (θ′z, θ
′
x)

′ through z′θz + x′θx.

For example, P (z, x, θ) = Φ(z′θz + x′θx) for Probit or P (z, x, θ) = exp(z′θz+x′θx)
1+exp(z′θz+x′θx)

for Logit.

As in Appendix D.1, we make the following assumptions.

Assumption D.1 Assuming following conditions hold

1. The conditional density of (Y,X,D) given P (Z,X, θ0) = p, denoted by fY,X,D|P (y, x, d|p),
is Lipschitz continuous in (y, x, p) over the joint support of (Y,X, P ) for d = 0, 1.

2. For all z ∈ Z and x ∈ X , P (z, x, θ) is continuously differentiable in θ at θ0 with bounded

derivatives.
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Assumption D.2 The estimator θ̂, β̂1, β̂0 admits an influence function of the following form,

√
n(θ̂ − θ0) =

1√
n

n∑
i=1

sθ0(Di, Zi, Xi, θ0) + op(1), (D.12)

√
n(β̂1 − β1) =

1√
n

n∑
i=1

sβ1(Di, Yi, Zi, Xi, β1) + op(1), (D.13)

√
n(β̂0 − β0) =

1√
n

n∑
i=1

sβ0(Di, Yi, Zi, Xi, β0) + op(1), (D.14)

where sθ0(·), sβ1(·) and sβ0(·) are measurable, satisfying E[sθ0(Di, Zi, Xi, θ0)] = 0,E[sβ1(Di, Yi, Zi, Xi, β1)] =

0, E[sβ0(Di, Yi, Zi, Xi, β0)] = 0, E[supθ ∥sθ0(Di, Zi, θ)∥2+δ] < ∞, E[supβ ∥sβ1(Di, Yi, Zi, Xi, β)∥2+δ] <

∞, and E[supβ ∥sβ0(Di, Yi, Zi, Xi, β)∥2+δ] < ∞ for some δ > 0.

Note that under similar conditions as in Section 4 of Hsu, Liao and Lin (2022, Economet-

ric Reviews), (D.13) and (D.14) would hold. We define the following quantities for generic

(y, ry, p, rp, b, θ):

m1(y, ry, p, rp, b, θ) = E[D1(y ≤ Y −X ′b ≤ y + ry)1(p ≤ P (Z,X, θ) ≤ p+ rp)], (D.15)

m0(y, ry, p, rp, b, θ) = E[(D − 1)1(y ≤ Y −X ′b ≤ y + ry)1(p ≤ P (Z,X, θ) ≤ p+ rp)], (D.16)

w(p, rp, θ) = E[1(p ≤ P (Z,X, θ) ≤ p+ rp)]. (D.17)

Let fP (p) denote the density function of P (Z,X, θ0) ≡ P(D = 1|X,Z; θ0). Following the cal-

culation in Hsu and Lieli (2021), we can analogously obtain the derivatives with respect to θ,

evaluating at the true parameter values (β1, β0, θ0) as

▽θm1(y, ry, p, rp, β1, θ0)

=E[D1(y ≤ Y −X ′β1 ≤ y + ry)|P (Z,X, θ0) = p] · fP (p)E[▽θP (Z,X, θ0)|P (Z,X, θ0) = p]

− E[D1(y ≤ Y −X ′β1 ≤ y + ry)|P (Z,X, θ0) = p+ rp] · fP (p+ rp)E[▽θP (Z,X, θ0)|P (Z,X, θ0) = p+ rp],

▽θm0(y, ry, p, rp, β0, θ0)

=E[(D − 1)1(y ≤ Y −X ′β0 ≤ y + ry)|P (Z,X, θ0) = p] · fP (p)E[▽θP (Z,X, θ0)|P (Z,X, θ0) = p]

− E[(D − 1)1(y ≤ Y −X ′β0 ≤ y + ry)|P (Z,X, θ0) = p+ rp] · fP (p+ rp)E[▽θP (Z,X, θ0)|P (Z,X, θ0) = p+ rp],

▽θw(p, rp, θ0)

=fP (p)E[▽θP (Z,X, θ0)|P (Z,X, θ0) = p]− fP (p+ rp)E[▽θP (Z,X, θ0)|P (Z,X, θ0) = p+ rp].

In addition, let fud|zxd(y|z, x, d) denote the conditional density of Ud conditional on (Z,X,D) =
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(z, x, d), then the derivatives with respect to β, evaluating at the true parameter values (β1, β0, θ0)

are

▽βm1(y, ry, p, rp, β1, θ0)

=E[P (Z,X, θ0)(fu1|zxd(y + ry|Z,X, 1)− fu1|zxd(y|Z,X, 1)X · 1(p ≤ P (Z,X, θ) ≤ p+ rp)]],

▽βm0(y, ry, p, rp, β0, θ0)

=E[(1− P (Z,X, θ0))(fu0|zxd(y + ry|Z,X, 0)− fu0|zxd(y|Z,X, 0)X · 1(p ≤ P (Z,X, θ) ≤ p+ rp)]].

Let the estimators for m1(y, ry, p, rp, β, θ), m0(y, ry, p, rp, β, θ) and w(p, rp, θ) be

m̂1(y, ry, p, rp, β, θ) =
1

n

n∑
i=1

m1,i(y, ry, p, rp, β, θ),

m̂0(y, ry, p, rp, β, θ) =
1

n

n∑
i=1

m0,i(y, ry, p, rp, β, θ),

ŵ(p, rp, θ) =
1

n

n∑
i=1

wi(p, rp, θ).

where

m1,i(y, ry, p, rp, β, θ) = Di1(y ≤ Yi −Xiβ ≤ y + ry)1(p ≤ P (Zi, Xi, θ) ≤ p+ rp),

m0,i(y, ry, p, rp, β, θ) = (1−Di)1(y ≤ Yi −Xiβ ≤ y + ry)1(p ≤ P (Zi, Xi, θ) ≤ p+ rp),

wi(p, rp, θ) = 1(p ≤ P (Zi, Xi, θ) ≤ p+ rp),

and

√
n(m̂1(y, ry, p, rp, β̂1, θ̂)−m1(y, ry, p, rp, β1, θ0))

=
1√
n

n∑
i=1

m1,i(y, ry, p, rp, β1, θ0)−m1(y, ry, p, rp, β1, θ0) + ▽θm1(y, ry, p, rp, β1, θ0) · s(Di, Zi, Xi, θ0)

+ ▽βm1(y, ry, p, rp, β1, θ0) · sβ1(Di, Yi, Zi, Xi, β1) + op(1)

≡ 1√
n

n∑
i=1

ϕm1,i(y, ry, p, rp, β1, θ0) + op(1),
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√
n(m̂0(y, ry, p, rp, β̂0, θ̂)−m0(y, ry, p, rp, β0, θ0))

=
1√
n

n∑
i=1

m0,i(y, ry, p, rp, β0, θ0)−m0(y, ry, p, rp, β0, θ0) + ▽θm0(y, ry, p, rp, β0, θ0) · s(Di, Zi, Xi, θ0)

+ ▽βm0(y, ry, p, rp, β0, θ0) · sβ0(Di, Yi, Zi, Xi, β0) + op(1)

≡ 1√
n

n∑
i=1

ϕm0,i(y, ry, p, rp, θ0) + op(1),

√
n(ŵ(p, rp, θ̂)− w(p, rp, θ0))

=
1√
n

n∑
i=1

wi(p, rp, θ0)− w(p, rp, θ0) + ▽θw(p, rp, θ0) · s(Di, Zi, Xi, θ0) + op(1)

≡ 1√
n

n∑
i=1

ϕw,i(p, rp, θ0) + op(1).

By Assumption D.1, all elements of ▽θm1(y, ry, p, rp, β1, θ0), ▽βm1(y, ry, p, rp, β1, θ0), ▽θm0(y, ry, p, rp, β0, θ0),

and ▽βm0(y, ry, p, rp, β0, θ0), are Lipschitz continuous in y, ry, p, rp, and each element of

▽θw(p, rp, θ0) is Lipschitz continuous in p, rp. It follows that {ϕm1(y, ry, p, rp, β1θ0) : (y, ry, p, rp) ∈
[0, 1]4}, {ϕm0(y, ry, p, rp, β0, θ0) : (y, ry, p, rp) ∈ [0, 1]4} and {ϕw(p, rp, θ0) : (p, rp) ∈ [0, 1]2} are

all VC classes of functions. Finally, let

ν1(y, ry, p1, p2, rp, β1, θ0) = m1(y, ry, p2, rp, β1, θ0) · w(p1, rp, θ0)−m1(y, ry, p1, rp, β1, θ0) · w(p2, rp, θ0),

ν0(y, ry, p1, p2, rp, β1, β0, θ0) = m0(y, ry, p2, rp, β0, θ0) · w(p1, rp, θ0)−m0(y, ry, p1, rp, β0, θ0) · w(p2, rp, θ0),

ν̂1(y, ry, p1, p2, rp, β̂1, θ̂) = m̂1(y, ry, p2, rp, β̂1, θ̂) · ŵ(p1, rp, θ̂)− m̂1(y, ry, p1, rp, β̂1, θ̂) · ŵ(p2, rp, θ̂),

ν̂0(y, ry, p1, p2, rp, β̂0, θ̂) = m̂0(y, ry, p2, rp, β̂0, θ̂) · ŵ(p1, rp, θ̂)− m̂0(y, ry, p1, rp, β̂0, θ̂) · ŵ(p2, rp, θ̂).

Lemma D.5 Suppose Assumptions 2.1 to 2.4, 3.3, D.1 and D.2 are satisfied, then,

√
n(ν̂1(y, ry, p1, p2, rp, β̂1, θ̂)− ν1(y, ry, p1, p2, rp, β1, θ0)) =

1√
n

n∑
i=1

ϕν1,i(y, ry, p1, p2, rp, β1, θ0) + op(1),

(D.18)

√
n(ν̂0(y, ry, p1, p2, rp, β̂0, θ̂)− ν0(y, ry, p1, p2, rp, β0, θ0)) =

1√
n

n∑
i=1

ϕν0,i(y, ry, p1, p2, rp, β0, θ0) + op(1),

(D.19)
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where

ϕν1,i(y, ry, p1, p2, rp, β1, θ0)

=w(p1, rp, θ0) · ϕm1,i(y, ry, p2, rp, β1, θ0) +m1(y, ry, p2, rp, β1, θ0) · ϕw,i(p1, rp, θ0)

− w(p2, rp, θ0) · ϕm1,i(y, ry, p1, rp, β1, θ0) +m1(y, ry, p1, rp, β1, θ0) · ϕw,i(p2, rp, θ0),

ϕν0,i(y, ry, p1, p2, rp, β0, θ0)

=w(p1, rp, θ0) · ϕm0,i(y, ry, p2, rp, β0, θ0) +m0(y, ry, p2, rp, β0, θ0) · ϕw,i(p1, rp, θ0)

− w(p2, rp, θ0) · ϕm0,i(y, ry, p1, rp, β0, θ0) +m0(y, ry, p1, rp, β0, θ0) · ϕw,i(p2, rp, θ0).

The proofs are similar to those in Appendix D.1, so we omit the details.

E Additional Empirical Results

Table 4: FLL Semi-parametric test, B-Spline

2 Knots 3 Knots 4 Knots 5 Knots
pf ps combined pf ps combined pf ps combined pf ps combined

All 0.13 1.00 0.25 0.06 1.00 0.11 0.02 1.00 0.04 na 1.00 1.00
Aggressive Assault 0.02 1.00 0.04 0.01 0.91 0.02 0.00 0.96 0.00 na 1.00 1.00
Robbery 0.13 0.73 0.25 0.06 0.99 0.11 0.02 0.44 0.04 na 0.45 0.90
Drug Sale 0.18 0.83 0.36 0.09 0.33 0.18 0.03 0.55 0.06 na 0.73 1.00
Drug Possession 0.45 0.82 0.89 0.31 1.00 0.61 0.14 0.99 0.27 na 0.98 1.00
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Mourifié, I., and Y. Wan (2025): “Layered policy analysis in program evaluation

using the marginal treatment effect,” Journal of Econometrics, 251, 106060.

Mueller-Smith, M. (2015): “The criminal and labor market impacts of incarceration,”

Unpublished Working Paper, 18.

Norris, S., M. Pecenco, and J. Weaver (2021): “The effects of parental and sibling

incarceration: Evidence from ohio,” American Economic Review, 111(9), 2926–2963.

Ren, M. (2024): “Extrapolating LATE with Weak IVs,” working paper.

Sithole, L. (2024): “A Locally Robust Semiparametric Approach to Examiner IV De-

signs,” arXiv preprint arXiv:2404.19144.

Stevenson, M. T. (2018): “Distortion of justice: How the inability to pay bail affects

case outcomes,” The Journal of Law, Economics, and Organization, 34(4), 511–542.

Sun, Z. (2023): “Instrument validity for heterogeneous causal effects,” Journal of Econo-

metrics, 237(2), 105523.

Vytlacil, E. (2002): “Independence, Monotonicity, and Latent Index Models: An

Equivalence Result,” Econometrica, 70(1), 331–341.

Yap, L. (2024): “Inference with Many Weak Instruments and Heterogeneity,” arXiv

preprint arXiv:2408.11193.

70


	Introduction
	Model and Sharp Testable Implications
	Connection to existing tests
	kitagawa2015, and MW2017 testable implications
	frandsen2023judging's test


	Testing Procedures
	A Semi-nonparametric test
	A semiparametric test with covariates dimension reduction

	Simulation and Empirical Application
	Simulation
	Binary outcome
	Continuous outcome

	Empirical illustration

	Salvage the Model under Weaker Assumptions
	Average Exclusion and Monotonicity
	Conditioning on Judge's Characteristics

	Conclusion
	Implementation of the test
	Constructing d()
	Constructing db()

	Proof of Main Results
	Proof of Thm: sharpMTE
	Proof of thm: validity
	Proofs for lem:1
	Detailed derivation for example: FFL fails

	A Finite sample test
	Lemmas and Intermediary Results
	Lemmas for the proof of thm: validity
	The influence function with covariate case

	Additional Empirical Results

