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Abstract

We propose sharp testable implications and tests to jointly assess the random
assignment, exclusion, and monotonicity assumptions in judge leniency designs. Our
procedures accommodate various data scenarios in which the number of defendants
handled by a judge may be either small or large, and allow for discrete or continuous
instrumental variables. When the validity of the design is rejected, a variant of the
marginal treatment effect can be identified under weaker assumptions. We apply our
test to the Philadelphia court data studied by Stevenson (2018) and demonstrate
that it outperforms non-sharp joint tests by significant margins in simulation studies.
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1 Introduction

We propose a novel sharp test to assess the validity of the judge leniency design, which has
emerged as a prominent instrumental variable (IV) approach in recent years, particularly
in empirical research exploring causal effects within the criminal justice system. This
design has proven beneficial in investigating the impacts of various interactions with the
legal system, such as pretrial detentions and incarcerations, on subsequent outcomes, in-
cluding recidivism rates, conviction probabilities, and employment prospects. What sets
the judge leniency design apart is its distinctive feature of randomly assigning judges to
different cases, with each judge handling a significant number of cases while having dis-
cretion over the final decision. The random assignment of judges enhances the credibility
of this IV approach and has led to its increasing popularity among researchers (Kling,
2006; Di Tella and Schargrodsky, 2013; Aizer and Doyle Jr, 2015; Mueller-Smith, 2015).!
Importantly, the judge leniency design’s random assignment feature extends beyond the
context of criminal justice, making it a valuable methodology in diverse research contexts,
including medicine, patents and startups, bankruptcy protection, evictions, and access to
foster care (see Doyle Jr, Graves, Gruber, and Kleiner, 2015; Farre-Mensa, Hegde, and
Ljungqvist, 2020; Dobbie, Goldsmith-Pinkham, and Yang, 2017; Gross and Baron, 2022).2

However, in addition to the random assignment, an instrumental variable must adhere
to two additional crucial conditions: (i) an exclusion restriction, which means that judges’
actions should only influence the treatment and should not have any direct influence on
the defendant’s future outcomes; and (ii) a monotonicity restriction, which means that
judges should consistently exhibit more or less leniency. This means that if a defendant
was treated (detained) by one judge, she would always be treated (detained) by a less
lenient judge. Trial decisions (treatment) are often multidimensional, including incar-
ceration, fines, community service, sentence length, and others (Johnson, 2014). These
decisions impact future outcomes. Because different judges may have varying attitudes on

these decisions, the exclusion restriction can be violated if some of the decisions are un-

IKling (2006) exploits randomized judge assignment along with judge propensities to instrument for
incarceration length, aiming to investigate the causal impact of incarceration on labor market outcomes.

2For example, Doyle Jr, Graves, Gruber, and Kleiner (2015) employs the judge leniency design in the
medical context to examine the impact of ambulance companies on patients in emergencies, relying on the
pseudo-random assignment of ambulance companies to patients. Similarly, Dobbie, Goldsmith-Pinkham,
and Yang (2017) uses the leniency of randomly assigned bankruptcy judges as an instrument to study
the implications of Chapter 13 bankruptcy protection on future financial events.



observed or uncontrolled. Furthermore, Abrams, Bertrand, and Mullainathan (2012) and
Stevenson (2018) argue there is considerable heterogeneity in how judges rank defendants
when considering various types of offenses. If this heterogeneity is not observed, then it is
possible that judges exhibit varying levels of leniency under different circumstances, and
the monotonicity assumption would be violated. These observations align with Mogstad,
Torgovitsky, and Walters (2019), who demonstrate that, in general, monotonicity effec-
tively requires homogeneous choice behavior for economic agents when there are multiple
instruments. Therefore, offering a statistical test to evaluate the validity of the judge
leniency design becomes a highly relevant empirical question.

In this paper, we characterize the sharp testable implications of the judge leniency
design as a set of inequality restrictions on the distribution of the observed data. Our
result is novel and contributes to the testable implications derived in the seminal work of
Heckman and Vytlacil (2005) in two ways. First, our implications belong to a tractable
subset of the constraints of Heckman and Vytlacil (2005) and are easier to implement in
practice. Second, we establish the sharpness of our testable implication, that is, they pos-
sess the unique quality of exploiting all available information within the data distribution
that is useful to refute the validity of the judge leniency design.

Numerous efforts have been made to test the judge leniency design in the existing
literature. A common approach involves providing separate evidence for the validity of
the individual assumptions made in the judge leniency design. For instance, to assess the
random assignment of judges, Dobbie, Gronqvist, Niknami, Palme, and Priks (2018) ex-
amines whether a measure of judge stringency (the instrumental variable) correlates with
baseline cases and family characteristics of criminal defendants. Regarding the mono-
tonicity assumption, they test an implication that requires the first-stage estimates to be
non-negative for all subsamples. Bhuller, Dahl, Lgken, and Mogstad (2018) and Norris,
Pecenco, and Weaver (2021) employ similar individual testing approaches. Assessing the
assumptions individually is effective in empirical scenarios where researchers know which
assumption to test and have prior knowledge that other assumptions hold. Our approach
adds to the existing body of knowledge by introducing a test that does not depend on
prior information. In fact, the three key assumptions may collectively impose certain con-
straints on the observable data-generating process (DGP), which could not be detected

by examining only the testable implications of each assumption in isolation.



Unlike individually testing each assumption, Frandsen, Lefgren, and Leslie (2023)
proposes a joint test for all assumptions underlying the judge leniency design. Their
test leverages the property that, in the judge leniency design, the average outcome at
the judge level should exhibit a smooth relationship with the propensity score (or the
judge-level treatment probability). It ought to have a bounded slope, where the bounds
depend on the limits of the outcome variable’s support. Although Frandsen, Lefgren,
and Leslie (2023)’s testable implication has the desirable property that it assesses all
the assumptions simultaneously, we show there is still significant relevant information in
the data distribution essential for evaluating the judge leniency design’s validity, but not
used in Frandsen, Lefgren, and Leslie (2023)’s testable implication. This difference is also
demonstrated by numerical examples and empirical studies reported in Sections 2 and 4.

To the best of our knowledge, our test is the only sharp test available for assessing the
validity of the judge leniency design. In other words, our testable implications exhaust
all the information in the observed data distribution. As seen in previous methods, non-
sharp tests have practical virtue when there is no easily tractable characterization of the
sharp testable implications of a model’s assumptions. If a non-sharp rejects, it conveys
an informative result that the assumptions should be rejected. However, there are also
important trade-offs to consider. First, a non-sharp test can have no power against certain
violations since it does not consider all possible constraints on the data distribution.
Second, different non-sharp tests can lead to discordant empirical results and potentially
misleading interpretations of the estimand of interest (see Li, Kédagni, and Mourifié,
2024). For instance, two different non-sharp tests may produce conflicting results because
they consider different aspects of the observed data distribution. Our sharp test addresses
both issues as it is a consistent test built upon sharp testable implications and, therefore,
a useful complement to the existing literature.

We construct valid and consistent semi-nonparametric and semiparametric tests based
on these tractable testable implications. Our asymptotic tests support a diverse range of
data structures. For example, we can apply our tests to the empirical context in which
each judge handles a large number of defendants, and the number of judges can be either
large or small (as in our empirical application). As we will further elaborate in Section 3,
our asymptotic tests are also applicable when the number of defendants for each judge is

small, as long as the data regime permits a root-n estimation of the propensity score.



We also provide an easy-to-compute finite sample test for cases involving a small num-
ber of judges and a small number of defendants per judge. To the best of our knowledge,
ours and the finite sample test of Frandsen, Lefgren, and Leslie (2023) are the only finite
sample specification tests in the judge leniency design literature. Like Frandsen, Lefgren,
and Leslie (2023), our finite sample test also focuses on binary outcomes. Unlike Frandsen,
Lefgren, and Leslie (2023)’s test, which ensures the finite sample validity by computing
a “least favorable p-value” via a high-dimensional nonlinear optimization routine, we use
Bonferroni correction. The computation for our test is very light and requires little more
than simulating Bernoulli random variables. Therefore, it serves as a useful addition to
the existing finite sample tests.

As a potential alternative to the existing non-sharp tests, one may consider testing the
validity of the judge leniency design employing some of the existing sharp tests developed
for the Local Average Treatment Effect (LATE) framework, i.e., Kitagawa (2015), Hu-
ber and Mellace (2015), and Mourifié and Wan (2017). However, it is worth noting that
these tests may over-reject since they are based on a priori direction in the monotonicity
assumption and are not directly applicable in the context of judge leniency design. For
instance, in the judge leniency design, the number of judges can be quite large, and in
some cases, it might even be infinite, especially when judges’ types are continuous. In
such scenarios, the number of potential directions to consider becomes large, possibly infi-
nite. Imposing a specific ex-ante direction in the judge leniency design is therefore overly
restrictive, and considering all possible directions might be impractical or impossible.
Furthermore, imposing an incorrect a priori direction bears an additional risk of model
misspecification. These issues highlight the need for a more flexible testing approach, like
the one proposed in this paper, which is free from making overly restrictive assumptions
on the direction of monotonicity.

While our test is primarily motivated by testing judge leniency designs, it can also
be applied to assess the identifying assumptions in a general Marginal Treatment Effect
framework with continuous or discrete instrument variables, which has been applied to
various empirical settings. See Carneiro, Heckman, and Vytlacil (2011); Kowalski (2016);
Brinch, Mogstad, and Wiswall (2017), among many others. In the context of judge
leniency designs, this also means that our test does not require observing a judge’s identity

and accommodates continuous judge types. Finally, motivated by Mogstad, Torgovitsky,



and Walters (2019), we propose to relax monotonicity and exclusion assumptions to partial
monotonicity and partial exclusion, respectively, when our test rejects the null hypothesis.

We organize the rest of the paper as follows. Section 2 presents the analytical frame-
work and the sharp testable implications of the judge leniency design. Section 3 presents
the testing procedures. In Section 4, we show the results of the simulations and discuss our
empirical illustration. In Section 5, we explore approaches to salvage the judge leniency
design when its sharp testable implications are violated. The last section concludes the

paper, and the proofs are collected in the online supplementary materials.

2 Model and Sharp Testable Implications

We adopt the potential outcomes framework. Let the observed treatment indicator be D €
{0,1}. For example, in the judge leniency design, the unit of observation is defendants.
Hence, D = 1 indicates that a defendant is incarcerated. Let Z € Z C R% be the type
of the judge assigned to the defendant. Yy(z) € Y C R denotes the potential outcome of
interest (e.g., recidivism) when the treatment and the judge’s type are externally set to
D =d, and Z = z, respectively. Similarly, D, denotes the potential treatment when the
judge’s type is externally set to Z = z. Let Y = Y1(Z)D + Yy(Z)(1 — D) be the observed
outcome. For the moment, we omit observed defendant and case covariates X (such as
time and courtroom of the trial) for ease of notation. The identification analysis in this
section can be extended by conditioning on X. We will also discuss the implementation
of our test in the presence of X in Section 3.2.

In our setting, Z can be multidimensional, continuous, discrete, or a combination of
both. For example, if there is a group of judges J, and if their identities are observed, then
Z € J can be chosen as the identity of the judge assigned to the defendant. This is the
instrumental variable that Frandsen, Lefgren, and Leslie (2023, FLL hereafter) consider.
On the other hand, we allow scenarios in which the judge’s identity is unobserved but
with observed characteristics. In this case, Z may contain a set of continuous or discrete
variables, such as the judge’s experience, gender, and race.

The literature mainly relies on the following assumptions to evaluate the causal effects

of treatment D on outcome Y.

Assumption 2.1 (Random assignment of judges) Z L (Yy(z),Y1(2),D.;z € Z).



Assumption 2.2 (Exclusion restriction) There is no direct effect of judges’ type on

the potential outcomes. For d € {0,1}, Yy(z) =Yy for all z € Z.

Assumption 2.3 (Monotonicity) For any pair (z,2') € Z x Z either D, > D, for all
defendants or D, < D, for all defendants.

A particular feature of the judge leniency design is that judges are usually randomly
assigned to different cases, making the random assignment assumption likely to hold in
practice. However, Assumptions 2.2 and 2.3 are usually less credible. Assumption 2.2
means the effect of judges on the potential outcomes must necessarily transit through
their effect on treatment assignment. Assumption 2.3 requires that any defendants treated
(incarcerated) by a more lenient judge be also treated if assigned to a less lenient one.
Heckman and Vytlacil (2005) refers to the monotonicity assumption as a uniformity con-
dition since it restricts that the treatment on all the defendants must vary in a uniform
direction when externally assigned to another judge. Vytlacil (2002) provides an equiva-

lent characterization of the monotonicity assumption, which can be stated as follows:

Assumption 2.4 (Single Threshold-Crossing: STC) The judge treatment assignment
mechanism is governed by the following threshold crossing model D = 1{v(Z) > U} for
some measurable and non-trivial function v, where the distribution of U is absolutely

continuous.

Under Assumptions 2.1 and 2.4, we can rewrite the threshold crossing model without

loss of generality as follows:
D =1{Fy(v(2)) =z Fu(U)} =1{P(Z) 2V},

where Fy(-) is the distribution function of U, P(-) = Fy(v(-)) is identified from the
observed variables (D, Z) by P(z) =P(D = 1|Z = z), and V = Fy(U) ~ Uniform|0, 1].
Hereafter, we will write P(Z) as P when it causes no confusion. Let P C [0, 1] denote
the support of P(Z). It is worth noting that the STC does not impose a priori direction
in z in the monotonicity condition since Assumption 2.4 is equivalent to Assumption 2.3

(Vytlacil, 2002). Under Assumptions 2.1, 2.2 and 2.4, the judge leniency design model



can be equivalently written as:

Y = 1D + Yy(1 - D),
(2.1)
D=1{P(Z)>V}.

Assumptions 2.1, 2.2 and 2.4 (equivalently Assumptions 2.1 to 2.3) impose some re-
strictions on the joint distribution of the observed variables (Y, D, P(Z)), which we will
characterize in Theorem 1. But before stating the theorem, we will discuss the intuition
of the testable implications. Let ¢ : ) — R* be a nonnegative real integrable function
such that E|g(Yy)| < oo. Taking d = 0 as an illustration. For any pair (p,p’) € P x P
such that p < p’, we have:

E[g(Y)(1 = D)|P = p] = E[g(Yo)1{V > P}|P = p] = E[g(Yo) I{V > p}]
> Elg(Yo)1{V > p'}] = E[g(Yo)1{V > P}|P =p ] =E[g(Y)(1 — D)|P =pl.

The first and fourth equalities hold by Assumption 2.4 (STC) and Assumption 2.2 (ex-
clusion); the second and third equalities hold because of Assumption 2.1 (random assign-
ment), and the inequality holds because p < p'. Intuitively, under the assumptions of the
judge leniency design, if a defendant is released by judge p/, then he/she would necessarily
be released by judge p since judge p is more lenient than judge p’. On the other hand,
there can exist a set of defendants who were released by a type p judge, but not by a
type p’ judge: a group of “compliers”. Because ¢g(Yj) is nonnegative, the average g(Yp)
for this group of compliers is also nonnegative, delivering the inequality we see from the

displayed equation above. The discussion is formalized in the following theorem.

Theorem 1 (Sharp characterization of the Judges’ IV design assumptions) Let
the collection of wvariables (Y, D,Y1,Yo, P(Z)) define a potential outcome model Y =
YiD + Yy(1 — D).

(i) If Assumptions 2.1, 2.2 and 2.4 (equivalently Assumptions 2.1 to 2.3) hold, then
forally,y € Y, Ply<Y <y, D=1P =p) and —Ply <Y <y, D = 0|P = p) are
non-decreasing in p for all p € P.

(i) If for ally,y' € YV, Py <Y <y, D=1|P=p) and —P(y <Y <y/',D = 0|P = p)
are non-decreasing in p for all p € P, there exists a joint distribution of (V,Y1, Yy, P(Z))



such that Assumptions 2.1, 2.2 and 2./ hold, and (f/, D, P(Z)) has the same distribution
as (Y, D, P(Z)).

The proof of Theorem 1 is collected in Appendix B.1. The testable implications
in Theorem 1(i) are a subset of the implications previously derived in Heckman and
Vytlacil (2005, Appendix A), who show for any non-negative integrable function, i.e.
g(:) : Y — R*, E[g(Y)D|P = p| and —E[g(Y)(1 — D)|P = p|] are non-decreasing in p
under Assumptions 2.1, 2.2 and 2.4. The contribution of Theorem 1-(i) is that it shows
we do not need to visit every single non-negative measurable function. It is sufficient
to restrict our attention to a tractable subclass of these functions to screen all possible
observable violations. This tractable characterization provides a basis for constructing a
formal statistical test to verify the validity of the assumptions.?

The second part of Theorem 1 is new, and it shows that the testable implications in
Theorem 1(i) are the most informative way to detect all observable violations of the ran-
dom assignment, the exclusion restriction, and the monotonicity assumption (without an
ex-ante imposed direction). These testable implications cannot be strengthened without
making additional assumptions. Various tests or testable implications are used in the lit-
erature to screen violations of the judge leniency design assumptions; for instance, Dobbie,
Grongvist, Niknami, Palme, and Priks (2018); Bhuller, Dahl, Loken, and Mogstad (2018);
Norris, Pecenco, and Weaver (2021); Frandsen, Lefgren, and Leslie (2023). However, to
the best of our knowledge, only Theorem 1 provides sharp testable implications without
imposing an a priori direction in the monotonicity assumption.

Tests based on sharp testable implications have empirical virtue. In practice, one
may use tests developed from non-sharp testable implications for the sake of traceability.
However, as recently discussed in Li, Kédagni, and Mourifié¢ (2024), non-sharp tests can
lead to discordant empirical results and misleading interpretations of the estimand of
interest. It is possible that for the same data, two different non-sharp tests may generate
contradictory results, as they may use different sets of information from the same observed
DGP to screen violations of the model assumptions. Thus, the conclusion may largely

depend on which test the empirical researcher implements.

3We note that use the the half-interval class g(Y) = 1{Y < y},y € Y will result in loss of power. To
see this, suppose the support is finite, that is, Y = {y1,v2, -+ , yx }, then it is without loss of information
to consider the class of singletons: ¢(Y) = 1{Y = yx}, k = 1,2,--- , K. However, if one considers
g(Y) = 1{Y < yi}, then it is possible that both P(Y < y;,D = 1|P = p) and P(Y < y2,D = 1|P = p)
are non-decreasing function, but P(Y = y2, D = 1|P = p) is not.



Moreover, after implementing a specification test and obtaining a non-rejection result,
one often proceeds and provides a causal interpretation of the estimand. For example, in
judge leniency designs, the 2SLS or Local IV (LIV) estimand is interpreted as the LATE
or MTE, respectively. However, since a non-sharp test only uses part of the observable
information in the data and fails to reject the model when it is misspecified, we must be
cautious about interpreting the 2SLS or the LIV estimand as identifying the LATE/MTE
solely based on the result of a non-sharp test. Therefore, using a sharp test must be viewed
not only as a theoretical exercise, but also as having an important empirical relevance.
A sharp test provides the most informative way to detect all observable violations of a
given model’s assumptions and is more robust to possible misleading interpretations and

discordant results.

2.1 Connection to existing tests
2.1.1 Kitagawa (2015), and Mourifié and Wan (2017) testable implications

Inspired by Heckman and Vytlacil (2005, Appendix A), Kitagawa (2015) and Mourifié
and Wan (2017) derive a set of sharp testable implications assuming an a priori direction
in the monotonicity assumption. When judges’ types are binary, i.e. Z € {0,1}, there
are only two potential directions, so it is not restrictive to assume the direction of the
monotonicity. However, when the cardinality of the judges’ types is large (or even infinite
when the judges’ types are continuous), imposing a specific ex-ante direction is extremely
restrictive because the number of possible directions to consider can be rather large (or
even infinite). One could implement their test by visiting all the possible directions, but
this can be cumbersome or even computationally impossible if Z takes many values.

One significant difference between the testable implication of Kitagawa (2015) and
Mourifié and Wan (2017) and ours is we do not assume a prior direction. To illustrate
this point, suppose Z = {z1,..., 2k} and suppose we assume one of the K! potential
directions as:

D..>D,. . >..>D,

ZK ZK -1 —

meaning that type zx judge is less lenient than type zx_;1 judge, which, in turn, is less

lenient than zx_ o, zx_3, -+, 21 judge. Given this imposed ordering, Assumptions 2.1
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to 2.3 imply the following testable implications studied in Sun (2023):

Ply<Y <y, D=1Z=2)<Ply<Y <y, D=1Z = z5n),
—Ply<Y <y, D=0|Z=2,) < -Ply<Y <y, D=0|Z = z141),
forall k € {1,.., K — 1} and y,y' € V.

A key point to note is that the above implications restrict Fy,pz(y, d|z) while the testable
implications in Theorem 1(i) instead restrict Fy,pjp(y,d|p). In the first case, the induced
direction of inequalities is with respect to the observed judge type Z, while in our case,
the inequalities are with respect to the propensity score P, which is obtained without
imposing a prior direction. Also, noteworthy is that if one takes y = —oo and ' = oo,
the testable implications in Theorem 1(i) no longer have any empirical content. But, the
testable implications with an ex-ante monotonicity direction still restrict the propensity

scores and the judges’ types, i.e., P, and Z, such that
P(D=1|Z =z) <P(D=1|Z = zpy1), forall k € {1,.... K — 1}.

Therefore, implementing the testing approaches of Kitagawa (2015) and Mourifié and
Wan (2017) may reject the judge leniency design assumptions even if Assumptions 2.1

to 2.3 hold, but just the ex-ante imposed direction of monotonicity is wrong.

2.1.2 Frandsen, Lefgren, and Leslie (2023)’s test

FLL proposes a set of testable implications for Assumptions 2.1 to 2.3. Their testable
implication has sound features of not relying on the ex-ante specified direction of mono-
tonicity and assessing all the assumptions jointly. Their testable implication, however, is
not sharp and can fail to screen some non-negligible observable violations of the judge
leniency design. To see this, consider any integrable function g(-) : Y — R, and let
p # p' € P. Under Assumptions 2.1 to 2.3, we can derive the following equality:

W(g(Y),p, ) Elg(Y)|P = 2;;], :f[g(YﬂP = p)

=E[g(Y1) —g(Yo)lp <V < p[lH{p < p'} + E[g(Y1) — g(Yo)Ip' <V < p]I{p < p'}.

11



If we denote by L, and U, the known lower bound and upper bound of the support of
g(Y), the latter equality implies:

Lg - Ug S W(g(Y)vpap/) S Ug - Lg7 (22)

where the inequality in (2.2) is the main testable implication used by FLL (see Theorem
1 and Equation (2) therein) to implement their test. However, under Assumptions 2.1

to 2.3, we should also have:

W(g(YD),p,p') =E[g(Y)lp <V <p{p <p'} +E[gM)p' <V <pli{p >},
W(g(Y(1—D)),p,p") = -E[g(Yo)lp <V <pl{p <p'} —Elg(Yo)[p' <V < p]i{p > p'},

where those two latter equalities lead to the following observable restrictions:

Ly < W(g(YD),p,p') < U, (2.3)
—Uy <W(g(Y(1=D)),p.p) < —Ly, (2.4)

One can easily observe that the testable restrictions in (2.3) and (2.4) could be violated,
whereas the restriction used by FLL, i.e. inequality (2.2) still holds. Hence, implementing
FLL’s statistical testing procedure based on inequalities (2.3) or (2.4) could provide a
different result compared to their test based on inequality (2.2) alone. These discordant
implications confirm the concern about developing a statistical test based on non-sharp

restrictions. Example 2.1 provides a concrete numerical example.

Example 2.1 Consider the potential outcome model:

D=1{P>V}.

Suppose V' is independent of (Y1, Yy, P). However, (Y1,Yy) and P are dependent:

Yi|P = p ~ degenerate at 1, if p <

NI N=

Y1|P = p ~ Bernoulli(p), ifp >

12



Yo|P =p ~ degenerate at 0, if p <

Yo|P = p ~ Bernoulli(p), if p >

NI= N=

Therefore, the randomization assumption is violated, but the monotonicity and exclusion
conditions are met. In this case, Yy is binary and Uy =1 and L, = 0, so we also take g(-)
to be the identity function without loss of generality.

For this DGP, we can show that for any p’ € (0,1) and p € (0,1), W(g(Y),p,p’) = 1.
Hence, FLL’s testable implication (inequality 2.2 above) always holds and has no power
to detect the violation. There is missing information. For example, when p' > p > %, we
can verify that W(g(Y D), p,p') =p +p > 1=U,. Therefore, condition (2.3) is violated.
Please see derivation details in Appendiz B.J.

On the other hand, our testable implication can capture such a violation. To see this,
note
p ifp<s

P oifp >3

E[YD|P = p] = EM|P = plp =

It is apparent that E[Y D|P = p| is not a monotone function of p, and therefore violates

our testable implication. [

The intuition behind Example 2.1 is not pathological and is reflected in the derivation
in Appendix B.4. Because E[Y|P = p| = E[Y1D|P = p| + E[Yo(1 — D)|P = p], it is
possible the violations on the E[Y;D|P = p| and E[Yy(1 — D)|P = p| “cancel” out. As
a consequence, the quantity E[Y|P = p| provides no power to detect violations in these
cases.

Another evident reason why FLL’s implications cannot exhaust all violations of the
judge leniency design is that they only focus on ¢g(Y') = Y, whereas the inequality in (2.2)
should hold for any integrable function g and for any pair p # p’ € P. g(Y) =Y is not a
sufficient class of functions to screen all violations of the model.

Finally, we note our testable implications in Theorem 1 do not rely on the known
support of g(Y'), whereas to test inequality (2.2), one needs to know the bounds of the
support (U, L,). If the support of ¢(Y) is unbounded, i.e., U, = +o0 and L, = —oo0,
then the testable implication in (2.2) holds trivially and FLL’s test does not have any
power in detecting violations to the identification assumptions.

In the next section, we propose a testing procedure based on the sharp testable impli-

13



cations of Theorem 1. We will show that in large samples, our test is consistent against all
the violations of our testable implication and is, therefore, more powerful asymptotically

than the existing ones.

3 Testing Procedures

In this section, we construct tests based on Theorem 1. For the defendant i € {1,2,--- n},
researchers observed a vector (Y;, D;, Z;, X;), where Y;, D;, Z;, and X; represent his/her
observed outcome, observed treatment status, the vector of characteristics of the judge
that ¢ was assigned to, and the vector of additional control variables, respectively.

We first present our baseline semi-nonparametric test in Section 3.1 without the pres-
ence of control variables X;. For this test, we make no functional form or distributional
assumptions about potential outcomes. We do need to estimate the propensity score
P(z) =P(D; = 1|Z; = 2) first, for which our procedure can accommodate different data
scenarios. If Z; contains continuous variables, we follow the common practice in the lit-
erature to employ a parametric model so that P(z) = P(z,6y) for all z € Z and for a
finite-dimensional parameter vector 6, € ©. Popular choices include the Probit or Logit
model with a linear index 2’6y (see, for instance, Carneiro, Heckman, and Vytlacil, 2011;
Kowalski, 2016, among many others).* When Z; only contains discrete variables, such as
judge’s gender, we can estimate P(D; = 1|Z; = z) by the sample averages of D condition-
ing on each possible value of z € Z. In this case, our test is indeed nonparametric.

We should emphasize that, in both cases above, we do not require any knowledge of
the identity of judges, nor do we need the number of defendants handled by each judge to
diverge to infinity. For example, when Z is gender, we only need the number of defendants
for each judge’s gender to go to infinity. This can happen when the number of judges is
large, but each judge handles a finite number (or even one) of defendants. Therefore, our
test can also be applied to other empirical contexts than the judge leniency design. There
is another scenario in which Z; is the judge’s identity. Suppose the number of defendants

handled by each judge is large, as in our empirical application. In this case, we can also

4When Z is continuous, the rejection result of our semi-nonparametric test can be interpreted as reject-
ing the joint assumption of the judge leniency design and the parametric form imposed on the propensity
score. In our simulation studies, we always keep the propensity score correctly specified. In these studies,
therefore, the rejection shows the power of our test to reject false judge leniency assumptions.
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consistently estimate judge j’s propensity score P(D = 1|Z; = j) by the sample frequency
estimator for each judge 7, regardless of whether the number of judges is small or large.

In practice, the number of defendants that a judge handles can be small. In this case,
one can not estimate P(D = 1|Z; = j) consistently without additional assumptions and
conventional inference methods can be invalid. This phenomenon has received attention
from the literature, see discussions in Jochmans (2023), Ren (2024), Sithole (2024), and
Yap (2024). These papers, however, focus on inference on the parameters instead of testing
model specification. To account for data scenarios with small numbers of defendants per
judge, we design a test that does not require a consistent estimator for the propensity
score and controls the size at any sample sizes for the case of a binary outcome. To the
best of our knowledge, this test and FLL’s finite sample test are the only ones for testing
judge leniency design specification with finite samples, and both focus on binary outcome
variables. Our test uses upper bounds of the null distribution to calculate the critical
values, and hence is very easy to implement. It only requires simulating Bernoulli random
variables, and no nonlinear optimization is involved. For the purpose of exposition, we
collect the finite sample test in Appendix C and focus on the cases in which the propensity
score can be consistently estimated in this section.

In practice, researchers may observe a set of defendant and case covariates X and
assume the randomization and monotonicity hold conditioning on X (see Assumptions 3.1
and 3.2 below). In the presence of covariates, researchers can use the semi-nonparametric
test introduced in Section 3.1 when the dimension of covariates is small or the number of
support points in X is not large; please see Remark 3.1 below. In other cases, the semi-
nonparametric test may encounter challenges associated with the curse of dimensionality.
To address this concern, we introduce an alternative semiparametric test designed to

accommodate situations with a large (but fixed) number of covariates in Section 3.2.

3.1 A Semi-nonparametric test

For the convenience of the exposition, we restate the testable implications as the null

hypothesis Hy. That is, for all p; > py with p1,ps € P and all y,y' € ),

Ply<Y <y, D=1P=p) >Py<Y <y, D=1|P = py), (3.1)
Ply<Y <y, D=0|P=p) <Ply<Y <y',D=0|P = ps). (3.2)
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The alternative hypothesis H; is then inequality (3.1) or (3.2) fails to hold for some
(p1,p2) and (y,y'). Without loss of generality, we assume the support of Y is [0,1].°
Testing inequalities (3.1) and (3.2) involves two features; first, it is a set of inequality
restrictions defined on conditional moments where the conditioning variable is possibly
continuous. We deal with the first difficulty by employing the method of Hsu, Liu, and Shi
(2019) to transform them into an equivalent set of restrictions on unconditional moments.
The second feature is that the conditioning variable P is not directly observed from the
data. We derive the new influence functions and show that the first-stage estimation error
is properly accounted for.

To be more specific, we define a collection of functions {vy(¢) : ¢ € L,d = 0,1} as

follows:

n() =EDHy <Y <y+r 3 1{py <P <py+r}] - E[l{p1 < P < p1+1,}]
—EDHy <Y <y+nr}1{p <P <pi+r}] - Efp <P <po+m}], (33)

and

() =E[(D - DI{y <Y <y+ry}1{ps < P < ps+1p}] - E[l{p1 < P < p1 +1,}]
—E(D-D{y <Y <y+r,t{p <P <pi+r,}]-E[l{ps < P < pa+1,}], (34)

where the index ¢ € L is defined as

l= (6;7620)/7 €y = (yary)lv gp = (p17p27rp)/7 L= £Y & EP,
‘CY:{(y7Ty): TyZQy_lv qy'y€{07172a"' a(Qy_l)} for(Zy:LQ,"' a}-

EP = {(pluanrp) C Ty = Qp_la qp - (plap2) € {071727' v 7(%) - 1)}27p1 2p2 for dp = ]-727" '

Then, following the same calculation as in Hsu, Liu, and Shi (2019), we can formulate

the null hypothesis in inequalities (3.1) and (3.2) as the following:

Hy:vy() <0, forallle L andd=0,1, (3.5)

5We can always apply a transformation to ensure the support of Y is [0,1]. If Y has a finite support
[a,b], we can apply an affine transformation Y = (Y — a)/(b — a). If Y’s support is the whole real line,

we can apply standard normal CDF after rescaling and re-centering: ¥ = ® (g‘{dzg)), where Y is the

sample average and sfd(Y) is the sample standard deviation.
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against the alternative hypothesis H; that inequality (3.5) fails to hold for some ¢ € L
and for d = 0 or d = 1. Consequently, testing the original sharp implication in Theorem 1
is equivalent to testing the set of inequalities indexed by ¢ € L, a class of cubes. There
is no loss of information for such transformation (see Andrews and Shi, 2013). Under
Hy, we expect to see T =37, (> 4, max{vy(€),0}*Q(¢) = 0, where Q(-) is a positive
weighting function. On the other hand, T" > 0 under H;. Our test statistics are based on
the appropriately rescaled and standardized sample analog of T'.

In the expression of v4(¢), the propensity score P(Z;) is unknown, but can be replaced
by its root-n consistent estimate P,. When we estimate the propensity score by a para-
metric model, we denote it as P = P(Z,, é), where 0 is the MLE. When Z; is the judge’s
identity and the number of defendants for each judge is large, we simply use the frequency

. ~ " D,1{Z;=Z; . . . .
estimator P; = 22]3?1:1 7 {1 ;i Zi}}' Algorithm 3.1 below summarizes the semi-nonparametric

test’s implementation procedure. Please see Appendix A for detailed equations and ex-

pressions.

Algorithm 3.1 This algorithm shows the steps for constructing the test statistics and

critical value.

1. Specify integers Qy and Qp, and create a coarser version Lo of L set by limiting

qy = 1727"' 7QY andqp: ]-727"' 7QP'
2. Compute the estimator for the propensity score Py, as detailed in Appendiz A.

3. For each { € Lg, construct estimates 01(€) and 0y(€) as sample analogs of Equa-
tions (3.3) and (3.4), as detailed in Equations (A.5) and (A.6).

4. Choose a positive integer B (as the number of bootstrap iterations), and for each
b= 1727'” 7B7

(a) Draw WP, We, ... WP as a sequence of independent random variables with both
mean and variance equal to one and are independent of the original sample.

(b) Estimate propensity score for each bootstrap iteration Jf’ib, defined in Fqua-
tion (A.9).

(¢c) Obtain D5(¢), d = 0,1, for each bootstrap iteration using Equations (A.10)
and (A.11).
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5. Compute the normalization factor, denoted by 64({), as:

B
b:

Z Td ))2, where v I/d 1 Z (3.6)

1

bo|3

Choose a constant € > 0, and let 5 () = max{5;((), €}.

6. Choose the weighting function  over L such that Q(¢) > 0 for all ¢ € L and
Y ver L) < o0o. Calculate the test statistics as

=3 3 max {va (é) 0}29(6).6 (3.7)

d=0,14cLq

7. Let a,, and B, be positive deterministic sequences.” Calculate the generalized mo-

ment selection (GMS) terms as

Ya(l) = =B, - 1 {M < —an}.

Gae(l)

8. Forb=1,2,--- B, calculate the quantity

r- ) max{%wdw)} a0,

de{0.1}.0eLo Tuc(l)
where
() = v/n (L) — 2a(0)) - (38)
B
9. Let ¢ = §(1 — a+n) +n, where (1) is the T-th empirical quantile of {Tb}b and
-1

n is a small positive constant, e.g. n = 1078

10. Define the test to be ¢,, = 1{? > ¢}. That is, we reject the null hypothesis z'ff > ¢

—2
To be specific, for g, and g,, we suggest to set Q(¢) = qy_?’ " (qq” —5-
P p

"See Andrews and Shi (2013) for the rate condition of a,, and B,, and they suggest to set a,, = v/0.3Inn
and B, = 1/0.4Ilnn/Inlnn. Here, we propose a, = 0.15Inn and B,, = 0.85Inn/Ilnlnn, as in Hsu, Liu,
and Shi (2019).

87 is the infinitesimal constant which is introduced mainly for the sake of proof; see for instance
Andrews and Shi (2013). Our simulation exercises set it to 107°
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Theorem 2 shows that the test ¢, has its size controlled asymptotically and is consis-
tent. The proof for Theorem 2 is collected in Appendix B.2 of the online supplementary
material. We also list all the technical assumptions, such as conditions that ensure the
first-stage estimator converges at a sufficiently fast rate, in that section for the sake of

exposition.

Theorem 2 Suppose Assumptions B.1 to B.3 and B.5 in Appendiz B.2 are satisfied. Let
a € (0,1/2) be the pre-chosen significance level.

(i) Under the Hy in characterized by inequalities (3.5), we have

limsup P(¢,, = 1|Hp) < . (3.9)
n—o0
(i) Under Hy,
limsupP(¢, = 1|H;) = 1. (3.10)
n—oo

3.2 A semiparametric test with covariates dimension reduction

In this section, we introduce a semiparametric test in the presence of covariates X. We

begin by introducing the following assumptions.

Assumption 3.1 (Conditional Random Assignment of Judges) Z L (Yy(z),Yi(2),D,;z €
Z)|X =z foralzeX.

Assumption 3.2 (Single Threshold-Crossing with Covaraites: STC) The judge treat-
ment assignment mechanism is governed by the following threshold crossing model D =
Hv(Z,X) > U} for some measurable and non-trivial function v, where the distribution

of U 1s absolutely continuous.

When Assumptions 2.2, 3.1 and 3.2 hold, the testable implications can be written as
follows. For all x € X', p;,p2 € P and p; > ps, and all y, o/ € Y

Ply<Y <y ,D=1|P=p, X =

) >Ply<Y <y ,D=1P=py, X =x), (3.11)
Ply<Y <y ,D=0|P=p;, X =2)<P

x) (y<Y <y ,D=0|P=py, X =2). (3.12)
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Remark 3.1 If X s discrete and X only contains a relatively small number of values,
or X contains a small number of continuous variables, we can also follow the same pro-
cedure as in Section 3.1 but add cubes for X. Under the null hypothesis, we should expect
T=3" 401 2wer 2over Max{va(l, x),01°Q(l, x) = 0, where Q{, x) is a positive weighting

function chosen by researchers, and

vi(lo) =EDHy <Y <y+r}l{es <X <z +r}1{p < P <pr+1,}]
XEH{er <X <z+r}l{p < P<pi+r}—-El{z < X <z+r,}{po < P <py+r1,}]
xEDHy <Y <y+r{z <X <z +r}l{p <P <p+7,}],

and

wlr) =E(D -1y <Y <y+r}{z <X <z+r}1{p <P <py+r1,}]
XEH{z <X <az+4r}l{p <P<pi+r}—El{z <X <z+r,}1{ps < P < py+r,}]
xE(D-DI{y<Y <y+r {z <X <z+r}1{p <P <p +71,}],

and 1, s similarly defined as r, and r,. The tmplementation follows analogously from

Algorithm 3.1.

When the dimension of X is high, an alternative approach is to include the covariates
parametrically, as in Carr and Kitagawa (2021, Assumptions A.4 and A.5), which we state

below:

Assumption 3.3 (i) For d = 0,1, then potential outcomes take the form of Y; =
ag + X'Bg + Uy, where (aq, Bq) are constants, and (ii) the residual terms (Uy,Uy) sat-
isfy (Uo, U1, V) L (X, 7).

Carr and Kitagawa (2021, Proposition 2) show if Assumption 3.1 is strengthened to
Assumption 3.3, then the testable implications in (3.11) and (3.12) can be characterized

as

(y<Y <y,D=1|P =py), (3.13)
(y<Y <y ,D=0|P=py), (3.14)

]P’(y<§~/§y',D:1|P:p1)

> P
Ply<Y <y ,D=0|P=p,) <P



for v,/ € Y, and

Y = D(Uy+ay)+(1=D)(Up+ag) = D(Yi—X'$1)+(1—D)(Yo—X'Bo) = Y —X'(Df1+(1—D) ).

The advantage of using (3.13) and (3.14) is that both inequalities are only conditional
on the scalar-valued propensity score. The effect of covariates has been filtered out by
constructing a new outcome variable Y. Assumption 3.3 is a common assumption made in
the literature for estimating the MTE, see for instance Carneiro and Lee (2009); Carneiro,
Heckman, and Vytlacil (2010); Kowalski (2016). Nevertheless, we do acknowledge it is
subject to the potential risk of model mis-specification. Under the null hypothesis of the
model being correctly specified, parameters 5, and 3; can be estimated by partial linear
regression of Y on X and propensity score P separately for the sample of D = 1 and
D=0:
EY|X =2, P=p,D=d =284+ Kq(p), de{0,1},

where Ky(p) = E[ag+Uy| X = 2, D = d, P = p| only depends on p under Assumption 3.3-

(ii). The following algorithm summarizes the steps for implementation.

Algorithm 3.2 1. The procedure starts with estimated propensity score P = P(Z;, X;, é)
using Equation (D.11).

2. Choosing the subsample with D = d, and within this subsample,

(a) Estimate E[Y|P] nonparametrically,’ and calculate the residual e = Y; —
E[Y;|P].
(b) Estimate E[X|P] nonparametrically, and calculate the residual e = X; —
E[X;| P].
(c) Regress e’ on eX and obtain the OLS estimates, denoted by Ba.
3. Once Bl and Bg are obtained, one can construct estimates for 57, =Y, — X{(DzﬂAl +

(1 - Dy)f)

4. Follow the rest of steps in Algorithm 3.1 with Y being replaced by Y.

90One can consider local polynomial estimation as in Carneiro and Lee (2009) or do global estimation
as in Kowalski (2016). Since we do not need to estimate the derivative K’(p) in our paper, we use global
polynomial regression in Kowalski (2016) for our simulation and empirical applications.

21



4 Simulation and Empirical Application

4.1 Simulation

In this subsection, we provide two sets of simulations to assess the size and power proper-
ties of our sharp test under various DGPs in finite samples. Throughout this section, we
ran 1000 replications for each simulation design, and the bootstrap sample size is chosen
to be B = 800. We set a,, = 0.15Inn and B,, = 0.85Inn/Inlnn, as in Hsu, Liu, and Shi
(2019). We choose Qp = 5 and Qy = 5 (for continuous Y') or Qy = 2 (for binary Y'). We
set the infinitesimal constant n = 107% and the constant e = 107° (see the definition of
67 .(€) in Algorithm 3.1-4).

4.1.1 Binary outcome

The first set of simulations is based on a DGP introduced in FLL (online appendix, page
22). In this set of simulations, we mimic the random assignment of n defendants to a
pool of J judges, ensuring an equitable distribution of % defendants to each judge. As in

FLL, the severity probability of each judge j is set as follows:

7g—1
pj:pa‘i‘ﬁ(l_pa_pn)

Here, p, and p,, stand for the fraction of always and never treated defendants, respectively.
FLL consider a binary outcome model where the outcome Y € {0, 1} satisfies the following

condition:

E[Y|pj]: 1_(1_)‘)<pn+pa) ) A )pa‘

L= atra) 1= (pu+tpa

The parameter A dictates the extent of deviation from the exclusion restriction assump-
tion. When A = 0, there is no violation of the judge leniency design assumptions. Conse-
quently, for A = 0, the simulations aim at assessing the size property of the two different
tests. On the other hand, A > 0 signifies a departure from the judge leniency design
assumption, with higher (absolute) values indicating a more pronounced deviation. Like
in the original paper, we adopt the parametrization for the fraction of always and never
treated p, = p, = 0.2. Meanwhile, we vary the value of A within the range of 0 to 1. Note
that the parameter A directly governs the shape of the function E[Y|P = p]. The nonzero

value of A can potentially be generated by violations of one of the three assumptions (or
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their combinations).

-E[Y(1-D)IP = p] E[YDIP = p]

0.2 03 0.4 05 06 0.7 08 0.2 03 0.4 05 06 0.7
P P

(a) ~E[Y(1 - D)|P =] (b) E[YD|P = ]

Figure 1: Testable restrictions by degree of violations of exclusion restriction

Figure 1 visually illustrates our testable implications of the judge leniency design for
the specific function g(Y) = 1{0 <Y < 1} =Y (because Y is binary). The left and right
panels of the figure, respectively, depict E[-Y (1 — D)|P = p|] and E[Y D|P = p|. These
population quantities are approximated by a large number of defendants (1 million) for
each judge. Intuitively, it is expected that E[Y D|P = p| and E[-Y (1 — D)|P = p| should
be non-decreasing when the judge leniency design holds. When the exclusion restriction
holds, as shown in both figures with A = 0, E[Y' D|P = p] and E[-Y (1—D)|P = p] behave
as expected. However, for a violation of the exclusion restriction (A = 0.4 or A = 0.8),
despite that E[Y D|P = p| remains to be increasing, the other function E[-Y (1 —D)|P =
p] decreases for higher values of the propensity score. This discrepancy starkly contrasts
with the implications of the judge leniency design assumptions.

In Figure 2-(a), we report the size property for our sharp test and FFL’s test at
5% significance level (when A = 0). The simulation designs involve twenty judges and
varying sample sizes, ranging from 500 defendants (equivalent to 50 defendants per judge)
to 5500 defendants (equivalent to 550 defendants per judge). The plot reveals that both
tests control size well in the aforementioned DGP. Specifically, it is evident from the graph
that the rejection rate of our sharp test is controlled by and close to the nominal level
of 5%. Conversely, the nonparametric test proposed in FLL consistently yields rejection

rates close to zero when setting the tuning parameter K = 1.1

10Recall the outcome variable is binary; hence, the largest possible absolute value for the treatment
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Figure 2: Rejection rates in FLL’s DGP

FLL discuss how one can improve the power of their testing methodology by consid-
ering more stringent upper bounds on the largest possible treatment effects (i.e., using
a smaller value of K). For instance, in their empirical application of a binary outcome
model-where the maximum treatment effect is set at 1-they advocate exploring smaller
permissible maximum treatment effect values. However, if K is set to be too small, then
FLL’s test can have server size distortion. Indeed, Figure 2-(b) graphically represents this
situation by plotting the rejection rate associated with FLL’s nonparametric test under
two additional cases: when the maximum allowable treatment effect K is set at 0.8 and
0.4, respectively. The striking observation is that the conclusions drawn from these sce-
narios can be misleading, as they suggest an excessive over-rejection of the assumptions
even when those assumptions are indeed satisfied. For example, if one sets K = 0.4, then
the rejection rate is always 100% whenever the sample size is greater or equal to 1000.
As a matter of fact, the rejection we observe from Figure 2-(b) reflects that the ad-hoc

imposed magnitude of the treatment effect is not correct, but the underlying exclusion re-

effect is 1. These results correspond to Figures 9 and 10 in the online appendix of FLL, where the
rejection probabilities are nearly zero for various sample sizes when A = 0.
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striction holds. Our test is immune to this problem since it does not require pre-specifying
the magnitude order of the unknown treatment effect.

To assess and compare the power property of the two nonparametric tests, Figure 2-
(c) plots the rejection rate as a function of A for 10 judges and 1000 defendants (100
defendants per judge). The solid line is the rejection rate of the FLL test, which is nearly
the same as what is plotted in FLL (Appendix, Figure 10). The rejection rate achieved
by our sharp test consistently surpasses that of the FLL test across the entire spectrum
of exclusion restriction violations, as indicated by varying degrees of A\. As shown, the

power improvement can be substantial.

4.1.2 Continuous outcome

The second set of simulations aims to show the performance of our test in detecting
violations of the judge leniency design when the outcome is continuous and unbounded.
Let (Uy, Uy, U, Z*) ~ N(u,X), where g = (o, pi1, v, frz) is a vector of means, and X is
a covariance matrix. For generic random variables A and B, let 0% be the variance of A
and p4 p be the correlation coefficient between A and B. In this design, we set 04 = 1 for
all A e {Uy,Uy,U, Z*}. Welet py, v = —0.5, pv,.v = 0.5, puz =0, pv,v, =0, pu,.z = 1,
and py, z = 0;. To create discrete judges or IV, we set

7 =F! <€(i*)) , U(Z") = argmin

=12, ,L—1

0
Fp(Z%) — E"

That is, we divide the support of Z* by L equal-probability intervals and concentrate
the mass over each interval to its nearest cutoff points. Let the potential outcomes and

treatment assignment be

D =1{v(X,Z) > U} x 1{8, = 0}
F(X, Z) > UVHU > Uy +1{1 — v(X, Z) > UN{U < Up}] x 1{5 # 0},

and
Yd(Z) :Oéd—l-Xﬁd—F(SgZ—i—Ud, Yd:ZYd(Z)l{ZIZ}

2€Z
where X ~ N(0,1) is independent of all the other random variables. We let v(x,z) = 2

and set ap = 0, and oy = 1.The § parameters, however, are set to be different values to
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Figure 3: Sharp Testable Restrictions for Different DGPs

capture different violations of the judge leniency design. More specifically,
1. when ¢, = d3 = 03 = 0, the assumptions of the judge leniency design hold;
2. §; # 0 denotes violation of the independence assumption;

3. d3 # 0 denotes violation of the monotonicity assumption; In this case, the selection

equation becomes
D=1{Z>U}}{U>Us}+1{1 = Z > U}}{U < Uy},

which indicates that there are two groups of judges, each with distinct skills (or
preferences) in assigning treatment. This is in clear violation of the monotonicity
assumption, which requires all judges to have the same skill (Chan, Gentzkow, and
Yu, 2022).

4. 93 # 0 denotes violation of the exclusion restriction.

Figure 3 plots E[g(Y)D|P = p] as a function of p when g(Y) = 1{Y > 0.5} and
20 judges for a simple illustration. The graphs were simulated with a large sample size
(over three million) and approximated the population quantity. The function is non-
decreasing when all assumptions are met, as shown in the upper-left panel. In contrast,
Elg(Y)D|P = p| deviates from the expected pattern when the judge leniency design

assumptions are violated in different ways.
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Figure 8, on the other hand, plots the testable implication used in FLL. The left side
panels plot E[Y|P = p| for each of the p € {p1,p2,--- ,p20} (sorted in increasing order)

for each of the four designs. The right panels plot the “numerical derivative” of the
E[Y|P=p;]-E[Y|P=p;_1]
Pj—Pj-1

that the curves in the right-hand side panels be bounded between [—K, K], where K

against {ps, - ,pa}. The FLL testable implications require

form

again is the difference between the upper and lower bounds of the support. Note that
in this example, the outcomes have unbounded support and, therefore, K = +oo. If
we choose K as a large number, then it is apparent that all four designs satisfy FLL’s
testable implication. Hence, we expect no rejection for designs 2-4, albeit they violate the

identifying assumptions unless K is set to be relatively small.
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Figure 4: FLL Testable Restrictions for Different DGPs

We proceed by implementing our sharp test and FLL’s nonparametric test. This
comparison is conducted across various parameter values and sample sizes. Specifically,
we consider a size design (Size §; = d; = 3 = 0), violation of independence (Powerl
9 = —0.5,, = 03 = 0), violation of monotonicity (Power2 d, # 0,4, = 03 = 0), and

violation of exclusion (Power3 d; = —0.5,0; = dy = 0). For each violation, we consider
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situations with covariates (51 = fp = 1) or without covariates (8; = fp = 0 ). When there
are covariates, we use Carr and Kitagawa (2021)’s method to control for covariates, as

discussed in the previous section. To implement FLL’s test, we set K to be the difference

between sample maximum (Ymq,) and minimum (Ymin): Ay = Ymaz — Ymin. We also
consider K = % and K = ?—g. The results are summarized in Table 1.

Table 1: Rejection Rate under Different Types of DGPs

(51 = (52 = (53 =0 (SiZe) 51 = —05, (52 = (53 =0 (POWBI‘].)
Without Covariates n =500 n = 1000 n = 2000 ‘ n=>500 n=1000 n =2000

Sharp Test 0.000 0.000 0.000 0.436 0.848 0.995
FLL-nonp, K = A,  0.000 0.000 0.000 0.000 0.000 0.000
FLL-nonp, K = % 0.007 0.001 0.018 0.015 0.054 0.129
FLL-nonp, K = % 0.064 0.284 0.719 0.101 0.376 0.839

9y # 0,01 = 63 = 0 (Power2) §3 = —0.5,0; = d3 = 0 (Power3)
Without Covariates n =500 n = 1000 n = 2000 ‘ n=>500 n=1000 n =2000

Sharp Test 0.374 0.734 0.942 0.183 0.503 0.902
FLL-nonp, K = A,  0.000 0.000 0.000 0.000 0.000 0.000
FLL-nonp, K = % 0.015 0.037 0.079 0.005 0.004 0.008
FLL-nonp, K = % 0.065 0.104 0.322 0.019 0.049 0.107

51 = 52 = (53 =0 (Slze) 51 = —05, 52 = (53 =0 (POWEI‘].)
With Covariates n=>500 n=1000 n = 2000 ‘ n=>500 n=1000 n =2000

Sharp Test 0.000 0.000 0.000 0.424 0.821 0.993
FLL-nonp, K = A,  0.000 0.000 0.000 0.000 0.000 0.000
FLL-nonp, K = % 0.003 0.000 0.000 0.029 0.018 0.041
FLL-nonp, K = % 0.069 0.113 0.293 0.084 0.173 0.456

9y # 0,6, = 63 =0 (Power2) 03 =—0.5,6; = J, =0 (Power3)
With Covariates n=>500 n=1000 n = 2000 ‘ n=>500 n=1000 n =2000

Sharp Test 0.345 0.714 0.936 0.167 0.488 0.902
FLL-nonp, K = A,  0.000 0.000 0.000 0.000 0.000 0.000
FLL-nonp, K = % 0.006 0.013 0.022 0.004 0.002 0.001
FLL-nonp, K = % 0.050 0.075 0.225 0.018 0.017 0.042

Regarding the size property, all tests control the size except the FLL test when K

is set to be very small. Our test and the FLL test with K = A, and K = % are
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Ay

1o, the rejection probability of FLL’s test increases

conservative. When one sets K =
quickly even when all the assumptions are satisfied (the first design). This is unsurprising
because a very small K essentially introduced another severe misspecification to the model.
However, when examining the power property of the three tests, we see clearly that our
test outperforms FLL’s tests by a large margin. The proposed sharp test has enough
power to detect the violation of any of the three assumptions (independence, exclusion,
and monotonicity). In particular, the rejection rates for our sharp test quickly increase
with sample size, surpassing 90% for all cases when the sample size reaches 2000 (or 100
cases per judge). Note that in this simulation, the parametric form of the propensity score
is correctly specified (except for Power2 when monotonicity is violated); hence, the high
power of our test is not because of misspecification of P(z,6y). In contrast, FLL’s test
has low power performance unless we set K as a small value, which, on the other hand,
induces size distortion.

Table 2 further examines how the rejection frequency varies as the “magnitude of
violation varies” for independence and exclusion. For this exercise, we focus on sample
size n = 1000 (50 cases per judge). Not surprisingly, when the magnitude of the violation
is small, all tests have low power. However, as the degree of violation increases, the
power of our sharp test rises quickly, even quicker than the FLL’s nonparametric test
with K = %. On the other hand, when K = A,, FLL’s nonparametric test does not
reject even if the degree of violation is substantial. Again, this table demonstrates that

sharp testable implications are desirable in practice.

4.2 Empirical illustration

In this subsection, we employ our test to assess the validity of the judge leniency designs
using data from Stevenson (2018); see also Cunningham (2021), who studies the impact
of pretrial detention on conviction. Using Philadelphia court records and leveraging the
varying leniency of bail magistrates as an instrumental variable, the author discovers that
pretrial detention leads to a 13% increase in the likelihood of conviction.

In the Philadelphia court system, following an arrest, individuals are taken to one
of seven city police stations for a video conference interview by Pretrial Services, which
assesses risk factors and financial details for public defense eligibility. Utilizing this infor-

mation, Pretrial Services assigns arrestees to a bail recommendation grid. Bail hearings,
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Table 2: Rejection Rate under Different Levels of Violations (No Covariates)

(52 = 53 == O, n = 1000 (51 = —0.1 (51 =—-0.3 51 =—-0.5 61 =—0.7

Sharp Test 0.001 0.085 0.825 1.000
FLL-nonp, K = A, 0.000 0.000 0.000 0.000
FLL-nonp, K = 4 0.001 0.004 0.054 0.911
FLL-nonp, K = 72 0.026 0.006 0.397 0.917

51 == 52 == 0, n = 1000 (53 =-0.1 (53 =-0.3 53 =—-0.5 53 = —0.7

Sharp Test 0.000 0.069 0.471 0.931
FLL-nonp, K = A, 0.000 0.000 0.000 0.000
FLL-nonp, K = 5 0.000 0.000 0.005 0.114
FLL-nonp, K = 32 0.027 0.002 0.032 0.798

conducted by magistrates every four hours via video conference, involve a brief process
where charges are explained, next court appearances are specified, eligibility for a court-
appointed defense attorney is determined, and bail amounts are set based on arrest details,
interviews, criminal history, guidelines, and input from representatives. Magistrates hold
broad authority to assign bail, which can fall into categories such as release without
payment, cash bail with a 10% deposit, or no bail at all.

Stevenson (2018)’s research design leverages the varying magistrate tendencies to as-
sign affordable bail as an instrument to study detention’s impact on case outcomes. To
answer the research questions, the author utilizes data from the court records of the Penn-
sylvania Unified Judicial System, obtained through web scraping of public records in PDF
format, which are then transformed for statistical analysis. The dataset encompasses ar-
rests in Philadelphia, where charges were filed between September 13, 2006, and February
18, 2013. The final dataset includes 331,971 cases and eight randomly assigned judges,
with each observation pertaining to a specific criminal case. As noted in Stevenson (2018),
the shift-rotation system at the Philadelphia court forms the basis for such randomness.

In what follows, we focus on the aggregate dataset (all criminal cases together) and
four primary categories of criminal cases in the data: aggressive assault, robbery, drug
sale, and drug possession. These four criminal cases we consider in isolation constitute
43% of the total cases. In Figure 5, we present two scatter plots for each crime cate-
gory: {(p;,E[YD|P = p,])}3_, and {(p;, —E[Y (1 — D)|P = p;])}3_,, along with a fitted

J =1
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polynomial to illustrate whether the anticipated implications of the judge leniency de-
sign framework are satisfied for the considered categories of criminal cases. The graphs
indicate E[Y D|P = p|] and E[-Y (1 — D)|P = p| are most likely to be non-decreasing

! The non-decreasing shape of the functions is unclear

for the aggressive assault case.!
for the other types of criminal categories. Although this graphical representation does
not constitute a formal test, it offers an intuitive insight. Specifically, it suggests that
the assumptions are the least likely to be violated in the aggressive assault case, while
the drug possession case shows the highest likelihood of violating the assumptions of the

judge leniency design.

E[YDIP:

.
.
2
048 049 05 051 052 053 054 055 056 057 058 08 0.81 0.82 0.83 0.84 0.85 0.86 0.87
Judge propensity p Judge propensity p

)
=

S L S .

s 2 o ©

2 o 8 g

& R & 8

-EIY(1-D)IP=p]

El
S
@

-E[Y“ -D)| P:p]

-0.16
048 049 05 051 052 053 054 055 056 057 058 0.81 0.82 0.83 0.84 0.85 0.86 0.87
Judge propensity p Judge propensity p

(a) Aggressive assault (b) Robbery

0.34 0.36 0.38 04 0.42 0.44 0.46 0.48 0.14 0.16 0.18 02 022 0.24 0.26
Judge propensity p Judge propensity p

F
L 038
Q
=
ur

-0.45

EIY(1-D)IP=p]
L]

042 05 .
034 036 0.38 04 042 044 046 048 014 0.16 0.18 02 022 024 026

Judge propensity p Judge propensity p

(c) Drug sell (d) Drug possession

Figure 5: Testable restrictions by case types

We observe a relatively large set of covariates, including fixed effects for year, month,
and day of the week. We, consequently, implement the semi-parametric version of our
test. For comparison, we also implement FLL’s nonparametric and semi-parametric tests.

The results of the three tests are presented in Table 3 for both the aggregate dataset and

Note all the outcome variables are binary. Therefore, the close interval we use for the Theorem 1 is
1{0 < Y < 1}, which equals to Y.
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separately for each of the four crime categories aforementioned. The nonparametric test
introduced by FLL indicates the validity of judge leniency design cannot be rejected either
conditioning on each crime category or the aggregate data set at 10% level, despite that
the shape of E[Y D|P = p|] and E[-Y (1 — D)|P = p| for the drug possession type suggests
the opposite. In contrast, our novel test yields results that align with expectations.
For instance, the sharp test does not indicate a rejection of the validity of the judge
leniency design assumptions for the aggressive assault. However, for all three other types
of offenses, our test rejects the validity of the judge leniency design. Meanwhile, FLL’s
semi-parametric test rejects the category of aggregate assault.!? These results suggest that
using the Wald estimand or the MTE approach for those cases will lead to inconsistent
estimates of the causal effects of interest.

Finally, we see no evidence to refute the assumptions underpinning the judge leniency
design when applying our sharp test to the aggregate dataset. This outcome may be
influenced by the notably high proportion of aggressive assault cases within the dataset
compared to other categories. Our result also ascertains that the exclusion restriction or
monotonicity can hold for some crime categories but not others, suggesting that controlling

the crime type is important in practice.

Table 3: Testing Judge Leniency Design: p-values

Sharp Test FLL-Nonp FLL-Semip

All 0.821 0.056 0.114
Aggressive assault 0.913 0.996 0.015
Robbery 0.033 1.000 0.109
Drug sale 0.005 0.116 0.180
Drug possession 0.000 0.929 0.610

Notes: This table reports the results of the statistical tests using Stevenson (2018)’data, including time
fixed effects as controls. Specifically, the considered controls are year, month, and day-of-the-week fixed
effects. Sharp Test stands for our novel semi-parametric test developed in this paper, while FLL-Nonp
and FLL-Semip represent the nonparametric and semi-parametric tests of FLL (three knots B-spline),

respectively.

12For FLL’s semi-parametric test, we fit the regression function E[Y|P = p] by B-spline with three
knots. The results for other numbers of knots are reported in the appendix. The reported p-value is the
“combined p-value” of the fit component and slope component of the test, and we can see from Table 4
in the online appendix that the rejection is mostly generated by the fit component.
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5 Salvage the Model under Weaker Assumptions

The rejection of the sharp test means that the judge’s leniency design assumptions are
too stringent for the data. In this case, relaxing some of these assumptions is required
to salvage the model. There are different ways to relax a model’s assumptions. One
way is to maintain the same estimand used in the stringent model and ask under what
conditions this estimand can still be interpreted causally. The model relaxation recently
entertained by FLL falls into this second approach, providing alternative conditions under
which the 2SLS could still have a causal interpretation when Assumptions 2.1 to 2.3 are
too stringent for the data. In Section 5.1, we revisit the average exclusion assumption
proposed by FLL and show it is a special case of a zero-covariance condition: a restriction
that may not always be justifiable in all empirical settings.

There is another approach that focuses on a well-defined policy-relevant parameter and
examines how this parameter could be point-identified or set-identified using weaker and
more credible assumptions. In such a case, the parameter of interest remains the same,
but the (set) estimands may vary depending on the credible assumptions one would be

willing to maintain. We will discuss this approach in Section 5.2.13

5.1 Average Exclusion and Monotonicity

We first revisit the average exclusion and monotonicity conditions. For simplicity, suppose
Z has finite support as in FLL such that Z = {1,2,---,J}. The general form of the

potential outcome model is,

Y=YiD+Y(1-D), Yi=) Ya2)l{Z =z}, D=) D.1{Z=z}

zEZ z2EZ

FLL proposes to relax Assumption 2.2 and Assumption 2.3 with the average exclusion

restriction and the average monotonicity assumption, respectively:

Assumption 5.1 Let A, = Pr(Z = 2), p. =E[D.], p=> ..z \p., D=3, ;\.D.,
and Yq =" 2 X\.Yy(2) for d € {0,1}.

13In this section, we mainly focus on the case in which the exclusion or monotonicity assumption is
violated. When the random assignment assumption is violated, one can consider a partial identification,
see Mourifié and Wan (2025).
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(a) Average exclusion restriction:

E |3 A (p. — p) {(Yo(z) - Yo)(1 = D.) + (Yi(z) - Vi)D. }| = 0.

z€EZ

(b) Average monotonicity: w =3 __- X, (p. — p) (D — D) > 0 almost surely.

Under Assumptions 2.1 and 5.1, FLL’s Theorem 3 shows that the 2SLS estimand (of using
P(Z) as IV) has a causal interpretation since it can be written as a weighted average of

the following treatment effect § = Y; — Y} i.e.,

Cov(Y.P(Z)) _ o {

Cov(D. P(Z)) _5} : (5-1)

Ew]

Note that the § in Equation (5.1) is a deterministic function of the collection of potential
outcomes {Yy(2)}a—0,1,:cz. The 2SLS estimand is causal because it is a weighted average
of § and the weight w is positive by the average monotonicity (Assumption 5.1-(b)).

Proposition 5.1 below provides a generalization and more transparent discussion of
the FLL’s Theorem 3. First, we demonstrate that the average exclusion assumption is
essentially equivalent to a zero covariance condition. Second, we show that Equation (5.1)
indeed holds for any deterministic function of {Y;(2)}4=01 ez, not just for 4.

To clarify these points, let us define o, = Y1(2) = Yy(2), and & =, ;. 1{Z = 2} =
Yi(Z) = Yo(Z). Let a = h(Y1(1),....,Y1(J), Yo(1), ..., Yo(J)) be an arbitrary measurable
deterministic function of the collection of potential outcomes. ¢ defined in Assumption 5.1
is a special case when we pick h(Y;(1),...,Yi(J), Yo(1),...,Yo(J)) = Y1 — Y;. One could
instead be interested in different treatment effects specific to each judge: o = a,, z =

1,2,---,J. « can also be a quantity without clear economic interpretation such as o =

Zzez zY (Z)

Proposition 5.1

(a) Under Assumption 2.1, and Assumption 5.1(b), the following equation holds for any

measurable deterministic function a of the collection of potential outcomes:

Cou(Y,P(Z)) w
Cov(D, P(Z)) £ {



where Yy =3 __Yy(2)1{Z = z}.

z2€EZ

(b) Under Assumption 2.1, fora =Y, =Yy = > \.(Yi(2) = Yo(2)) = . N\.a. we have:

Z/\z (pz _p) {(Yb(z) - }70)(1 - Dz) + (}/1(2) - }71)Dz} .

2EZ

Cov ((64 —a)D + Y, P(Z)) =E

The proof for the proposition is collected in Appendix B.3. Under Assumption 2.1 (in-
dependence), Proposition 5.1(b) shows that the average exclusion restriction of FLL is, in-
deed, a special case of the zero-covariance assumption when o = 4. Proposition 5.1(a) fur-
ther shows that if one targets an arbitrary quantity a = h(Y31(1), ..., Y1(J), Yo(1), ..., Yo (J)),

and if one is willing to impose the same zero-covariance assumption on a:
Cov ((a —a)D + Yy, P(Z)) —0, (5.2)

then one can always interpret 2SLS estimand as the weighted average of o with positive
weights under the average monotonicity Assumption 5.1(b). This happens because the
above zero-covariance condition in Equation (5.2) is a reduced-form condition, which
assumes that the correlation between a reduced-form error (involving the parameter of
interest) and the propensity score, i.e. Cov (Y —aD, P(Z)) = 0.

How does one assess the plausibility of the average exclusion condition? FLL provides a
heuristic argument.'* However, this argument could also be invoked by anyone who wants
to impose that Equation (5.2) holds for other o # 9. Also, it is difficult to justify why
Cov ((5 —0)D + Yy, P(Z)) = 0 but Cov ((d —a)D+Y, P(Z)) # 0 for other @ # 0.

Furthermore, it is worth noting that the average exclusion restriction is not invariant
to a relabelling of the treatment. In other terms, this assumption may hold if the re-
searcher defines the treatment as D equals 1 if incarceration and 0 if not, while it may
not hold if the researcher recodes the treatment as D equals 1 if no incarceration and 0 if
incarceration. Indeed, after a relabelling, the zero-covariance in Equation (5.2) becomes:

Cov ((d —a)D +}~/1,P(Z)) = 0. It follows that the average exclusion assumption is
invariant to a relabelling if and only if Cov (371, P(Z)) = Cov <%, P(Z)).

MErandsen, Lefgren, and Leslie (2023, page 19): “Average exclusion can be probed by examining the cor-
relation between judge-level treatment propensity and judge-level averages of alternative channels through
which judges may affect outcomes if such channels are observed. Average exclusion may be more plausible
if these correlations are near zero.”
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Despite all those discussed above, we do observe a direct way to assess the validity of

Assumptions 2.1 and 5.1. In fact, under these assumptions, there is:

‘ Cov(Y, P(Z))

Cov(D, P(Z))' <E HEC[U—wﬁH <E[|<U-L

where U and L are, respectively, the upper and lower bounds of ). Therefore, if the
support of the outcome is bounded from both above and below, then the absolute value

of the 2SLS estimand must also be bounded.

5.2 Conditioning on Judge’s Characteristics

In practice, it is not uncommon for researchers to have good reason to believe the assump-
tions hold after controlling for the judge’s specific characteristics. We explore this idea in
this section and demonstrate that it is closely related to the partial exclusion assumption
(defined below) and the partial monotonicity assumption made in Mogstad, Torgovitsky,
and Walters (2019). Specifically, we decompose Z into two components: Z; and Z,., and
we assume the monotonicity and exclusion restriction hold conditionally on Z.. Here, Z,.

can be a judge’s race or political party, and Z; is a vector of the remaining characteristics.

Assumption 5.2 (Partial Exclusion) Let Z = (Z},Z!). For d € {0,1}, Yy(z) =
Ya(ze) for all z € Z.

Assumption 5.3 (Partial Monotonicity) For any (z1,2.) and (2}, 2.) € Z x Z either
D(z1,2.) > D(z}, z.) for all defendants or D(zy, z.) < D(2}, z.) for all defendants.

The partial exclusion assumption relaxes Assumption 2.2 and allows the potential
outcomes to depend on the subvector Z.. For instance, when the treatment of interest
is incarceration, judges could assign and differ in other punishments, such as probation,
fines, or sentence length. These other punishments could directly affect potential out-
comes, making Assumption 2.2 unlikely. Minority judges may be less lenient in their
sentence length than their majority counterparts (Johnson, 2014). Beyond the decision
to incarcerate, different sentence lengths may have divergent effects on future labor mar-
ket outcomes. If the sentence length is not observed or controlled, we would expect the
potential outcome to depend on whether a judge is a minority judge through this channel.

The partial exclusion assumption states that whether and how the judge assigns other
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types of punishment depends only on a subset of the judge’s observable characteristics
(Z.), but not on others (Z7). In other words, a defendant will end up with the same pair
of potential outcomes (Y7(z.), Yo(2.)) as long as he or she is assigned to judges with the
same observed characteristics Z. = z.. Finally, when the only instrument variable we
observe in the data is the identity of the judge Z;, then the partial exclusion assumption
is equivalent to the original exclusion Assumption 2.2.

The partial monotonicity Assumption 5.3 was initially introduced in Mogstad, Tor-
govitsky, and Walters (2019). It significantly weakens Assumption 2.3 since it does not
require comparing the level of leniency across judges with different observable character-
istics. For instance, let Z, = (Z&, ZF) be composed of the following binary variables: Z%#
equal to 1 if the judge is black or Hispanic and 0 if not, while ZF is 1 if the judge is
from the Republican party and 0 if from the Democratic party. Imposing Assumption 2.3
means it is not possible to have a black democrat judge be more lenient than a white
republican judge for some defendants while being less lenient for other defendants, i.e.,
these two judges may have different cut-off points, but they rank all the defendants in the
same order. Mathematically, we can not have both P(D(z7,1,0) =1, D(2},0,1) =0) >0
and P(D(27,0,1) = 1,D(z7,1,0) = 0) > 0. However, there is a large body of empirical
evidence of heterogeneity in the ranking of judges’ leniency across different types of offense
or defendants (see Abrams, Bertrand, and Mullainathan, 2012; Stevenson, 2018). This is,
however, compatible with the partial monotonicity. Its main advantage is that it no longer
requires a uniform ranking of defendants across different judges. Judges’ rankings are al-
lowed to vary with their characteristics Z.. Applying the result of Vytlacil (2002), the
partial monotonicity condition can be characterized as a partial single threshold-crossing

restriction under the independence assumption Assumption 2.1, which we restated below.

Assumption 5.4 (Partial Single Threshold-Crossing) Type Z = (Z;,Z.)’s judge
treatment assignment mechanism is governed by the following threshold crossing model
D, = Ww(Z;,Z.) > Uz} for a measurable function v, where the distribution of U,, is

absolutely continuous for all z. € Z..

Under Assumptions 2.1 and 5.4, we can apply the standard normalization,

D(zp,2.) =1 {FUzC\ZC<V(zI7Zc>|Zc) > Fy. 2. (U.,

ZC)} =1{P(z1,2c) > V.. },
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where Fy, (-) is the distribution function of U, , P(zy, z.) is identified from the observed
(D,Z) by P(z1,2.) = P(D = 1|Z; = z1,Z. = z.). Note by construction, V,_ follows
Uniforml0, 1] distribution because the distribution of U, is absolute continuous; also,
V., is independent with (Z;, Z.).

The key difference between the STC and the Partial STC is even though V,_ follows
Uni forml0, 1] distribution, each defendant does not face a single V. Instead, he or she
faces a collection of {V,_,z. € Z.}. This unobserved latent variable is now different for
judges with distinct observable characteristics. The partial STC has a natural interpre-
tation as an extension of the Roy model (Canay, Mogstad, and Mountjoy, 2024). We can
interpret P(zy, z.) as the perceived gain of incarcerating a defendant by a type z = (zy, 2.)
judge, and V,, as the expected cost (but unobserved to the econometrician) of incarcerat-
ing a defendant. The particularity of the partial STC is that the expected cost can vary
across judges with distinct observable characteristics z., but is fixed within judges with
the same z.. In the standard monotonicity assumption, the cost V would be the same
regardless of the characteristics (27, z.). For the same reason, the partial STC is also more
reasonable in settings where decision-makers (judges) differ in their preferences and skills
(Chan, Gentzkow, and Yu, 2022).

Here, we provide an example of eight judges deciding whether to incarcerate a given
defendant to elucidate further the richer heterogeneity enabled by the partial monotonicity
(or, equivalently, the partial STC) assumption. We consider the two observable charac-
teristics of the judges introduced earlier, Z. = (Z£ ZF) € {0,1} x {0,1}. These two
binary observable characteristics result in four types of judges. The eight judges are
evenly allocated across these four types.

The left rectangle of Figure 6 shows the benefit and the expected cost of incarcerating
the defendant in a separate unit segment for each judge. For example, p;; and p); are
the benefits of the two black democratic judges with type Z. = (1,1) to incarcerate the
defendant. The right rectangle of Figure 6 plots the benefit numbers of all eight judges
on the same unit segment. Similarly, U;; represents the expected cost of incarcerating
the defendant by a black democratic judge: they share the same expected cost or skills.
A judge incarcerates the defendant when the corresponding benefit is higher than the
expected cost of incarceration. In Figure 6, the judges who incarcerate the defendant are

blue-colored, while those who release the defendant are red-colored.
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Figure 6: Monotonicity in Judge IV and Conditional Judge IV designs

The behavior of the eight judges does not violate Assumption 5.3 or Assumption 5.4.
However, the standard monotonicity Assumption 2.3 is clearly violated (right rectangle of
Figure 6). Indeed, the judge with propensity score p}; incarcerates the defendant (blue-
colored), whereas judges with higher propensity scores po1, pio, Or peo do not incarcerate
the defendant (red-colored). Note that Assumption 2.3 would not be violated for this
group of judges only under one of these two conditions: (i) all four V,_ are greater than
the maximum of the eight propensities or smaller than the minimum of all eight properties.
In other words, when all judges make the same decision regarding this defendant, or (ii)
judges who do not incarcerate the defendant must have lower benefit scores than judges
who incarcerate the defendant. Moreover, one of these two conditions must hold for all
defendants when we impose Assumption 2.3 (or Assumption 2.4).

However, Assumption 5.3 (or Assumption 5.4) does not require such a binding restric-
tion. In particular, under the partial monotonicity assumption, defendants are allowed
to be defiers across judges with distinct observed characteristics Zx. For instance, in
Figure 6 and using propensity scores to identify judges, the defendant is a p}; — po; defier,
a piy — p1o defier, a pi; — poo defier, and a pj; — poo defier.

Assumptions 2.1, 5.2 and 5.4 are weaker than Assumptions 2.1 to 2.3. We show that
under these weaker conditions, it is still possible to identify meaningful treatment effect

parameters.
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Theorem 3 (Identification under Partial exclusion and monotonicity) If Assump-

tions 2.1, 5.2 and 5.4 hold, then:

(i) (Identification of the LATE). Let P, be the support of P(Zr,Z.) conditioning on
Ze = z.. Then for any pair (p,p’) € P., X P, such that p < p’ we have the following

identification results:

ElgY)|P=p,Z.=z]—Elg(Y)|P =p, Z. = z]
P—p

= Elg(Y1(zc)) — 9(Yo(z))[1{p < Ve <P}

(i1) (Identification of the MTE). For any p € P,, such that E[g(Y)|P = -, Z. = z] is
continuously differentiable in the neighborhood of p, then,

OE[g(Y)|P =t,Z. = 2z

5 [\, = Elg(Mi(=)) — 9(Yo(z)|Vz. = .

(iii) (Testable restrictions). For any fived z. € Z., P(y <Y <y ,D =1|P =p, Z. = z.)
and =Py <Y <y',D =0|P =p, Z. = z.) are non-decreasing in p for all p € Py,
and any y,y € ).

The proof of Theorem 3 is similar to Theorem 1 after conditioning on Z. = z. and
therefore omitted. The identification results stated in Theorem 3 (i)-(ii) demonstrate that
whenever there are two judges with distinct Z; but share the same observed characteristics
Z. = z. the conditional Wald estimand identifies the LATE provided the propensity
scores for these two judges are different. Moreover, when the distribution of Z;|Z. = z.
allows one to take the derivative of E[g(Y)|P = -, Z. = z.], the conditional LIV estimand
identifies the MTE. This identification result is a local version of the standard LATE and
MTE identification.

Theorem 3 (iii) presents the testable implications of the weaker monotonicity and
exclusion assumptions. The testable implications in Theorem 3 (iii) are weaker than
those in Theorem 1 (i). To see this, let us consider the same example of the eight judges
discussed above, where the outcome of interest is recidivism (Y € {0,1}). We consider
the same two observable characteristics of the judges, Z. = (Z%, ZF) € {0,1} x {0,1}.
Let 0%(p) =P(Y = 0,D = d|P = p) for d € {0, 1}. In this simple case, the sharp testable
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implications under the standard judge leniency design, i.e. Assumptions 2.1 to 2.3 are:

0 (pho) < 0'(P}1) < 0'(por) < 0" (p1o) < 0 (py) < 0" (poo) < 0'(p11) < 0'(pl)
0°(pho) = 6°(Ph1) = 0°(por) = 6°(p1o) > 60°(py) = 6°(poo) > 6°(p11) = 6°(ply),

which is a total of fourteen inequalities. However, when invoking our weaker set of assump-

tions, we have only eight inequalities that characterize the sharp testable implications:

"Who), 0" (por) < 0 (), 0" (Pho) < 0" (poo)
"(plo),  °(por) = °(0hy),  6°(Pho) = 6°(Poo)-

‘91(27/11) < ‘91(2711), 91(1?10) <
0°(p),) > °(pn1), 6°(pro) >

The comparison of the testable implications in Theorems 1 and 3 confirms that the judge
leniency design is more stringent than the conditional judge leniency design. Hence,
whenever the standard judge leniency design is rejected, the researcher may rely on its

relaxed versions as long as the testable implications derived in Theorem 3 are satisfied.

6 Conclusion

In this paper, we derive the sharp testable implications for identifying assumptions for
the judge’s leniency design in a general framework where the instruments can be either
discrete or continuous and propose a consistent test for the implications. Our simulation
study and empirical results highlight the importance of considering sharp implications for
a better use of information in the data. While we focus on the primary application of
testing the validity of judge leniency design, our method can be readily applied to a broad

range of other applications.
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APPENDIX

A Implementation of the test

In this section, we describe the details of calculating the test statistics for Algorithm 3.1. Let
{Y;, Z;, D;}7, be a random sample and P(D; = 1|Z;) = P(Z;,6y) be the propensity known to
fp. Note that when Z is the judge’s identity and if the number of defendants for each judge

diverges to infinity, we can simply use the frequency estimator P = Zz’ciﬁ Df{l ;ff?z}l} Therefore,
=1 =4

in the appendix sections, we focus on the case in which Z is continuous to simplify notation.

A.1 Constructing v,(/)

First, when Z is continuous, we estimate 6y by MLE,

. 1 —
0= argmax — Zlog f()/la Di) ZivX’ia 9)
=1

SCI
1 n

= argmax — ZDi log P(Z;,0) + (1 — D;)log(1 — P(Z;,0)). (A1)
beo N =

where P(z,0) is parameterized and depends on z through 2’6. For example, P(z,6) = ®(26,)
for Probit or P(z,0) = %/92)) for Logit.

1+exp(2'0.
Next, note that

Vl(ya Ty7p17p27 Tp7 90) - ml(y7ry7p27rp7 00) . w(plvrlhg()) - ml(y7 74:1}7])1774]77 00) : w(p27rp7 00)7

VO(yv Ty, P1,P2,Tp, 90) = mO(yvryap%rpv 90) : w(plvrp7‘90) - mO(ya Ty, P1,Tp, 00) : W(pQ,Tp, 00)7

where

mi(y, 1y, p,7p, 0) = E[D1(y <Y <y +1y)1(p < P(Z,0) <p+1p)], (A.2)
mo(y, Ty, p,7p,0) =E[(D -1y <Y <y+ry)l(p < P(Z,0) <p+rp)l, (A.3)
w(p,rp,0) = E[l(p < P(Z,0) < p+1p)]. (A.4)

We can estimate mq(y,ry,p, rp,0) and w(p,rp, ) by sample analogs and 6 be replaced by its
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MLE 6:
N ~ 1 R
md(y)ryvpvrp)e) = nz;mdi(y>ry7p7rp)9)7 d:O71
3
p,Tp, sz parp7

with

mai(y, 1y, 0, 1p, 0) = Dil(y <Y <y +ry)lp < P(Z;,0) <p+1p),

moi(y,ry,p, Tp,e) = (Dz - 1)1(3/ <Y, <y+ Ty)l(p < P(Ziyg) <p+ 74p)a

wi(p,rp,0) = 1(p < P(Z;,0) < p+1p).

Then, for a given ¢ = (y, 7y, p1,p2,p)’, we can estimate v1(¢) and () by

ﬁ1<€) = ml(y7ry7p27rp7 é) ' w<p17rp7 é) - ml(ya Ty, P1,Tp, é) ' ’(I](pQ,Tp, é)?

ﬁO(g) = mO(y7Tyap2arpa é) : w(pbrpv 0) - mO(ya Ty, P1,Tp, 0) : ’U}(p%rpa 9)

A.2  Constructing 75(/)

In this appendix, we show how to construct the bootstrap estimates ﬁg(f). For bootstrap

iteration b, let {W{’,Wzb, ‘e ,Wf{} be a sequence of i.i.d. random variables with both mean

and variance equal to one. For instance, we can choose standard normal. Let 6® be the MLE

based on the b-th bootstrapped sample:

6 = argmax — Z WPlog f(Y;, Dy; Zi6)

0cO
= argmax — Z WP {D;log P(Z;,0) + (1 — D;)log(1 — P(Z;,0))},
g N
and the estimated propensity score for the b-th bootstrap as
P} = P(2;,0") (A.9)
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We define the weighted bootstrapped estimators for mq(y,ry,p,7p,600), mo(y, ry,p,rp, 0) and
w(p7 Tp, 90) be

_ R 1 < N
ml{(y’ryvparp)eb) = ﬁ szb : mli(ya Tyvpvrpaeb)/ﬁzwiba

ﬁig(y7ry’p’rp7éb) = - ZW mOz(ya Ty,p,Tp, / ZWb

n

@b(p,rp,éb) = %ZWI’ w;(p, rp,ﬁb / ZWI’

i=1

Finally, for a given ¢ = (y, ry, p1,p2,7p)’, Wwe can construct 192(6) for the b-th bootstrap iteration

= ml{(ya Tyva)Tpu 0) : wb(phrpu eb) - ml{(gﬁryaplvrpa 6b) : wb(p27rp) 9b)7 (AlO)
Ag(g) = ml())(%ryyp%rpv éb) ' UA}b(phT'p, éb) - mg(y7ryap17rp7éb) : UA}b(an rp7 éb) (All)

B Proof of Main Results

B.1 Proof of Theorem 1

Proof. Theorem 1-(i) is a direct application of Heckman and Vytlacil (2005)’s testable impli-
cations where g(Y) = 1{Y € (y,y']} for y <y’. We focus on part (ii).

We define some notation. Let L(P) be the set of limit points of P, L°(P) be a set of
interior point of P, and C(P) be the closure of P. Furthermore, let I(P) = C(P)/L°(P) be the
complement of £L°(P) in the closure of P. So I(P) also contains isolation points. Note that £L°(P)
can be written as a union of countable or finite exclusive open intervals: L£°(P) = U‘]le(aj, b;),
where (a;,b;) € P, bj < ajt1, and J can be infinity. Let §(P) be a collection of intervals
belonging to (0, 1] defined as follows:

QP) = {(p,p]: p,p’ € [(P)U{0,1} and (p,p) NP = 0}.

So the interior of each interval does not intersect with P. Q(P) contains a generic element (cg, d],
where ¢, di, € I(P), di, < ckt1, k = 1,2,--- | K with K possibly equals to oo, depending on
how many isolation points there are in P. Note that with above notation, for any v € (0, 1],
v must belongs to one of the following categories: (i) an element of £°(P) so that v € (aj,b;)
for some j, (ii) v € L(P)/L°(P), and (iii) there exist an integer k such that v € (cg,dg]. The

following figure illustrates the partition of the unit interval.
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Figure 7 An illustration: P = {p17p27p5} U [p37p4] ) [p67p7]7 £0(7)) = <p37p4) U (p67p7)7
and Q(P> - {<O’p1]7 (pl:p?]» (p47p5]7 <p57p6]7 (p77 1]}

We will assume that P(y <Y <¢',D =1|P =p) and P(y <Y < ¢',D = 0|P = p) are
continuously differentiable over £° as a regularity condition under which the local instrumental
variable (LIV) estimand is well defined.

First, we construct V and D as follows:
P(V <t|/P=p)=tV(t,p) €[0,1] x P, and D =1{P(Z) > V}.

By construction, Assumption 2.4 is satisfied. Next, we propose the following distribution for

371\17,]3. For any arbitrary p € P and v € (0, 1], we define

SP(Y <y,D=1|P =t)|y=y ifve L(P)

PYV1 <ylV=uv,P=p) = (limy,, ZP(Y <y,D=1|P=1t)=; if ve L(P)/L(P)
FYsu.D=lIP=de) FOSy.DEIP=ck) - if 4 ¢ L(P) but v € (e, di] € QP).

—I9P(Y <y,D=0|P =t)[i=, ifveL(P)

P(Yo<ylV=0v,P=p) = {—limg,, Z2P(Y <y,D=0|P =t)jj—s ifve L(P)
P(Y <y,D=0|P=c;)—P(Y <y,D=0|P=d;) - o
(r<y.D=0P=er) PV <y.D=0P=d) if ; ¢ [2(P) but v € (cx, di] € A(P).

Note that the conditioning on V = v and P = p, the distribution of ¥; does not depend on p.
Hence, Assumption 2.1 is satisfied by construction.

We now show that the distribution function constructed above is well defined. We focus on
P(Y; < y|V = v, P = p) and the verification for P(Yy < y|V = v, P = p) is analogous. Let y and
7 be the lower and upper bounds of the support of Y, respectively.

1. P(v; < Y- |V =v, P =p) =0 forall v € [0,1] and for any arbitrarily small € > 0. To see
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this, suppose v ¢ L(P), then there exists (cg, dx] € Q(P) such that v € (¢, di], therefore,

P(Yi <y—¢lV =v,P=p)
(Y <y-eD=1P=d) -PY <y-eD=1P=ct) 0-0
N di, — ¢, Cdy—c

On the other hand, if v € L°(P), then P(Y <y —¢,D = 1|P = 9) = 0 for all ¢ in a
small neighborhood of v, which implies %IP’(Y <y—¢D=1|P=v)=0. The case that
v € LO(P) follows straightforwardly.

2. P(Y; <y|V =v, P =p) = 1. First, if v € L°(P), then
_ 0 _
IP’(YSy,D:1\P:v):]P’(D:1|P:v):v:>8—]P’(Y§y,D:1|P:v):1.
(

On the other hand, if v ¢ L(P), then

]P’(Yﬁ@,D:1|P:dk)—P(Y§y,D:1|P:Ck) _dk—ck_

P(Y1 <F|V=v,P=p) = =
(Y1 <7 p) P p—

1.

3. P(Y; < y|V = v, P = p) is nondecreasing in y. For y < ¢/ we have

P(Y, <y |V =0v,P=p)—P(Y; <y|lV =uv,P=p)
SP(y<Y <y ,D=1|P=t)[i—, >0 if v e L(P),
= q limg_,, %P(y <Y<y, D=1|P=t)|=5 >0 ifve L(P)/L(P)

P(y<Y <y',D=1|P=d;,)—P(y<Y <y',D=1|P=c . o
WX <y DEP=d) Pu<Y<yLD=UP=a) > if o ¢ LO(P) but v € [cg, dy] € Q(P),

where the last inequalities hold whenever the testable implications hold, i.e. P(y <Y <
y',D = 1|P = p) is a non-decreasing function for all p € P and all y < ¢/, and by the
continuous differentiability of P(y <Y < y', D = 1|P = p) over L(P).

Finally, we show that (V,Yy, P(Z)), d € {0,1} is observationally equivalent to (V, Yy, P(Z))
d € {0,1}. For this, we show that the conditioning distribution of (Y, D) given P(Z) is the
same as the conditioning of (Y, D) given P(Z). Take an arbitrary p € P.

Suppose first p ¢ L°(P), then (0,p] can be expressed as unions of exclusive intervals

(Uj;l(aj,bj)) U (UK, (ck, dy]) for some J* and K*, where (a;,b;)s are connected subsets of
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P. Therefore,

. - - - P . -
P(Y <y,D=1|P =p) =P\ Sy,Vﬁplep)Z/ P(Y1 < y|V =wv,P =p)dv
0

. K oa
:Z/JP(ﬁSyW/:U,P:p)dv—i—Z/ P(Y; <y|V =v, P = p)dv
=17 k=1"¢k
-
=> (P(Y <y,D=1|P=0;) —P(Y <y,D =1|P = q;))
7=1

K*
+Y (P(Y <y, D=1P=dy) = P(Y <y, D =1|P = c}))
k=1
=PY <y, D=1P=p)—P(Y <y,D=1|P=0)=P(Y <y,D =1|P = p),

where the first equality is by construction that V satisfies Assumption 2.4, the third equality
holds because (0, p] can be expressed as unions of exclusive intervals <U3-];1 (a;, bj)> U (Uf;l (ck, dk]),
the fourth equality is obtained by inserting the constructed counterfactural distributions, and

the last one holds because P(Y <y,D =1|P =0) = 0.
Suppose that p € (a;+,bj+) C LO(P) for some j*, then the right hand side equals to

- . - - P - .
P(Y <y,D=1P=p) =P\ Sy,Véplep)z/ P(Y1 <ylV =wv,P =p)dv
0

Qa.;* _ ~ D B ~
:/] P(Héy\Vzv,P:p)var/ P(Y: <ylV =v,P = p)dv
0

Q;x

J

p
=P(Y <y,D= 1]P—aj*)+/ ;P(ng,D— 1|P = v)dv
v

aj*
=PY <y, D=1P=aj<)+PY <y,D=1P=p) —P(Y <y,D=1|P = a;-)

=P(Y <y,D=1|P =p),

where the [(7"P(Y; < y|V = v,P = p)dv = P(Y < y,D = 1|P = a;+) holds by the above
argument and the fifth equality holds by inserting the constructed counterfactural distributions.

This completes the proof.[]

B.2 Proof of Theorem 2

We begin by listing a few regularity conditions for the proof of Theorem 2. Again, when Z is the

judge’s identity, we use the frequency estimator P, = ZZ":? Df{l ékasz} for the propensity score.
=1 =4

For its root-n-consistency, we only need )" ; 1{Z; = j} — oo for each judge j, and i.i.d. of
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(Y;, D;, X;) among defendants conditioning on judges. So Assumptions B.1 to B.3 and B.5 are

mostly for the case of continuous instrument Z.
Assumption B.1 The observations {(Y;, D;, Z;, X;)}1, are i.i.d. across i.

For notational simplicity, Assumption B.1 assumes that all cases are mutually independent,
which is equivalent to assuming that each judge handles exactly one case. All inference results
can be extended straightforwardly to settings where judges handle multiple cases (with varying

case counts across judges) by accounting for clustering at the judge level.

Assumption B.2 We impose the following smoothness conditions:

1. The conditional density of (Y, D) given P(Z,0y) = p, denoted by fy,p|p(y,d|p), is Lipschitz
continuous both in p on P and iny on Y for d=0,1.

2. For all z € Z, P(z,0) is continuously differentiable in 6 at 0y with bounded derivatives.

Note that Assumption B.2-(1) does not exclude the case of discrete propensity score. When
P is discrete and P contains finite many distinguished elements, any convergent sequence in P
must be a constant sequence eventually, and in that case Assumption B.2-(1) holds automatically.
Assumption B.2-(1) implies that the functions my and w, defined in Equations (A.2) to (A.4),
are continuous functions of ¢. Assumption B.2-(2) implies that the class of functions {1(p <

P(Z,0) <p+rp):0€0O,pec[0,1],7, € [0,1]} is a Vapnik-Chervonenkis (VC) class of function.

Assumption B.3 The parameter space © for 6y is compact, and 6y is in the interior of ©.

The estimator 0 admits an influence function of the following form,
1 n
V(- 6y) = \/ﬁ;s(pi,zi,eo) + 0,(1), (B.1)

where s(-,-,-) is measurable, satisfying E[s(D;, Z;,00)] = 0, E[supy|s(D;, Z;,0)|] < oo, and
V (supy |s(D;, Z;, 0)]) < oc.

Assumption B.3 is satisfied for common maximum likelihood estimators and parametric binary
response models. For example, if one estimates 6y by Probit model D; = 1[Z/0y > V;], with

Vi ~ N(0,1), then
((2D; — 1)Z}0)
Di, Z;,00) = i0) .
$(Di Z,60) = 32D, —1)2780) 7

If the Logit model is used, then

!
s(D;, Z;, 00) = <Di exp(Z;%) ) Z;.

1+ exp(Zl6o)
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Assumption B.4 {W;}! | is a sequence of i.i.d. pseudo random variables that is independent

of the sample path with E]W;| =1 and Var[W;] = 1.
Assumption B.5 The estimator gv satisfies that

(@ — §) = %Z(Wi — 1) s(Di, Zi, 8o) + op(1), (B.2)
=1

where sq¢(+) is the same as in Assumption B.3.

Assumption B.5 is satisfied under our weighted bootstrap procedure.
The proof of Theorem Theorem 2 follows from the same arguments as Theorems 5.1 and 5.2

of Hsu (2017) once Lemmas D.1 to D.4 are established, as detailed in Appendix D.1.

B.3 Proofs for Proposition 5.1

Part (a). Note that,

Cov(Y, P(Z)) =Cov (f/lD +Yy(1— D), P(Z))
—Cov (dD + Yo, P(Z))
—Cov (aD + (@& —a)D + Yo, P(Z))
—Cov(aD, P(Z)) + Cov ((d —a)D + Yy, P(Z)) .

The first term on the right hand side can be written as

Cov(aD, P(Z))

ElaD(P(Z) - p)]

> ElaD.(p. —p)| Z = 2]\

z=1

J
=E aZDZ(pZ —p)A:| =EJaw],
z=1

where the conditioning variable Z = z is removed by the independence Assumption 2.1. This
shows that
Cov(Y, P(Z)) = E [aw] + Cov ((a —a)D + Yy, P(Z)) .

Next, it is easy to verify that
Cov(D, P(Z)) =E[D(P(Z) —p)] =E[w].
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Finally, the proof is completed by taking the ratio of Cov(Y, P(Z)) and Cov(D, P(Z)) (which is
possible as long as the instrument is relevant).

Part (b).
Cov ((d —a)D + Y, P(Z)) =K [((5& —a)D + ffo) (P(Z) - p)]

E [((az —a)D, + sz) (pz —p) ‘ Z = Z] A

P”ﬂk

n
I
_

E [)‘Z(pz - p) ((az - a)Dz + K)z)]

bllqk

N
Il
—

Fllﬁk

E [)\z(pz - P) (}/1zDz + }/Oz(l - Dz) - aDz)]

I
Il
—

PllﬂK

E [)\z(pz - p) (leDz + Y[)z(l - Dz) - (YlDz + }70(1 - Dz) - YO))]

I
Il
—

M-

E [X(p- —p) (Yi. = Y1)D. + (Yo. — Yo)(1 — D..) + Yp)]

z=1

J
Z)\z(pz - p) ((Yi,g - Yl)Dz + (}/E)z - }70)(1 - Dz))

z=1

=K

i

where the third equality is by the independenceAssumption 2.1, the fifth is by substituting for
a =Y — Y, and the last equality holds because E [Ei:l A (py — p)?o} =0.0

B.4 Detailed derivation for Example 2.1

For the ease of reading, we restate the DGP below. Consider the potential outcome model:

Y =Y1D + Yy(1 — D),
D=1{P>V}.

We assume V is independent of (Y1, Yp, P). However, (Y1, Yp) and P are dependent:

Y1|P = p ~ degenerate at 1, ifp< %
Y1|P = p ~ Bernoulli(p), ifp>1
Yo|P = p ~ degenerate at 0, ifp< %
Yo|P = p ~ Bernoulli(p), if p> %
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We first check inequality (2.3). Let p’ > p > %, and use the condition that V is independent
of (Y1,Yp, P), we have

E[YD|P = p/] —E[YD|P = p|
p—p

CEMP=plp —EM|P=plp p*-p*

B p—rp -

W(g(YD),p,p') =

Therefore, condition (2.3) is violated.

Next, we check condition (2.2). Based on the relative positoin of p/, p, and i

5, we verify it

by four cases.

(i) Suppose first p’ > % > p,

EY1D+ (1 - D)Yo|P =p/| —E}1D + (1 — D)Yo|P = p|

W(g(Y),p,p) = P
_EMIP =plp’ - EY1|P = plp + E[Yo|P = p'](1 — p) — E[Yo|P = p](1 — p)
P=p
_ % —p+EN|P =p](1 - p) — E[}o|P =p|(1 - p)
P=p

2 (1 — ¢
P pJ/rp( p):leg—Lg,
p-p

where E[Yp|P = p] = 0 because Yj is degenerate at 0 when conditioning on P = p < %, and
E[Yy|P = p/] = p because Yy ~ Bernoulli(p') when conditioning on P = p’ > 3.
(ii) Suppose p > % > p,

EYV1|P = p'lp’ — E[Y1|P = plp + E[Yo| P = p'|(1 — p') — E[Yo| P = p](1 — p)
p—p
_ P =P+ ENP = p|(1 - p) — E[Y|P = p](1 - p)
P —p

W(g(Y),p,p) =

P -p—p(l-p)
p—p

=1=U,~ L,
(ili) If 3 > p' > p, then

EY1|P = p'lp’ — EY1|P = plp + E[Yo|P = p'](1 — p') — E[Yo|P = p|(1 — p)

W(g(Y),p,p') = o —p

=== =1=U, — Ly,

because in this case Y; and Y, are degenerate at 1 and 0, respectively.
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(iv) If p > p > 1, then

EY1|P = p'[p’ — E[Y1|P = plp + E[Yo| P = p'|(1 — p') — E[Yo| P = p](1 — p)

W(g(Y),p,p) =

P —p
PP +p(1-p)—p(l—p) P -p»
B p—p _p’*p_l_Ug_Lg’

because in this case both Y7 and Y follows Bernoulli distribution.
Combining (i)—(iv), we can conclude that condition (2.2) always holds and has no power to
detect the violation.

On the other hand, our testable implication can capture such a violation. Consider
E[YD|P = p] = EV1|P = plp =

It is apparent that E[Y D|P = p] is not a monotone function of p, and therefore violates our

testable implication.

C A Finite sample test

This appendix section considers the case with a finite number of J judges, j =1,2,---,J, and
judge j handles a finite number of n; defendants. For notation simplicity, we assume n; =
njy = n*, so that the total number of defendants n = Jn*, but our test can be straightforwardly
extended to allow for heterogeneous n;. For defendant ¢, let Z; € {1,2,---,J} be the identity
of the judge who handles his/her case. Let p; be the propensity score or stringency measure of
judge 7, defined as

pj = P(D; =1|Z; = j)

We assume a judge treats all his/her defendants independently. In this section, we consider the
case where Y is a binary variable, as in Frandsen, Lefgren, and Leslie (2023). Let Wi1 =Y.D;
and W) = —Y;(1 - D;), and define ¢j = E[W}'|Z; = j] = P(W}! = 1|Z; = j) and ¢} = E[W?|Z; =
jl = —P(W? = —1|Z; = j). Note that because D; > W} > 0 and 0 > W? > (D; — 1), we have
0<g; <pjand 0< —q) <p;.

The judge leniency design would imply that (p; — pj/)(q? - q}j,) >0forall j,7 € J and d €
{0,1}, where J ={1,2,---,J}. With this notation, we rewrite the null hypothesis as

Hy : (pj —pj')(q;l - q}-i/) >0 forall j,j' € J and d € {0,1} (C.1)
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To implement a test for Hy, we first consider a test ¢/ for the null hypothesis of a given
pair (4,7') at & level, that is,
P(¢* =1|Hy) < &,

Then, we can define the overall test ¢ such that ¢ = 0 if ¢77" = 0 for all pairs (j, ), and ¢ = 1
otherwise. That is, we reject Hy if we reject at least one out of J(J — 1)/2 pairs. If we choose

~ 2a
= Joy then, we can ensure that

P(6 = 1|Ho) = PUssy {69 = 1}1Ho) < 3" P = 1]i0) < 2D _ g

— 2
>y’

Now we construct ¢4 for the pair (j,5'). Define dp = pj — pjr, (53 = q}i - qjd,. The relevant
null hypothesis is Hg’j/ : 5p6g > 0 for d = 0,1. The idea of constructing ¢*/" is as follows. We
first construct the least favorable confidence interval for §, and 5;1, d = 0,1. Then, suppose we
observe that the upper bound of the confidence interval for ¢, is below zero, while the lower
bound of the confidence interval for 53 is above zero. In that case, we consider this as evidence
against the null hypothesis that §, and (55 have to have the same sign. Similarly, we also reject
when the lower bound of the confidence interval for ¢, is above zero while the upper bound for
5(‘11 is below zero.

Let & = %. Let Sp = p; — pj and 53’ = (j;l - qA;.j, be estimators for 4, and 53, respectively,

where

pj = Zz]il Dil*{Zi - j}’ A;z _ Zz]il Widl*{Zi - .7'}.
n n

Let ¢, be the smallest support point of Sp such that ]P’(gp > éplpj = py = 0.5) < &. Note
that the distribution of 8,, is symmetric around zero under p; = p;; = 0.5 because defendants
handled by judges j and j" are independent, then we would know that —¢é, is the largest support
point of Sp such that ]P’(Sp < —Cplpj = pjy = 0.5) < &. Clearly, ¢p is known and can be tabulated
for each n and & by simulation (When n; and nj are different, we can simulate the aand 1 —a

quantiles too). Another observation is that for all & < 0.5,
P(5, < —éplp; = pjr = p) < P(S, < —&ylpj =py =0.5) =&, VYpe (0,1).

That is, the distribution of Sp is most dispersed when p; = p;; = 0.5. For instance, if p; = pjs =1,
then 0, = 0 is degenerate. Let 6’3,,,[] =0, + ¢, and ﬁp,L — 0, — &, then define

CS,=[CSp1,CSpul. (C.2)
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It is easy to verify that ﬁp is a valid 1 — 2& level confidence set for 0p among the models with

pj =Dpj’-
Similarly, we define ég be the largest support point of Sfll such that P(ég > ég\pj = pj =

0.5) < &, and define its 1 — 2& level confidence set as
——d  ——d  ——d
cS,=[CS, 1,08, vl (C.3)

——d ~ ——d ~
where C'S,, |, = 5(‘11 - ég and CS, ;= (53 + ég.

Now we are ready to define ¢/7". We reject Hg’j " when any of the following events happen:
— 1 — —0 — —1 — —1
{CSpuv <0, CS,r> 0}, {CS,v <0, CS,r> 0}, {CS,L > 0,08, < 0},{CSp. >0, CS,u < 0}
We first verify that P(¢/7 = 1|Hé’j/) < 4& = &. Note that,

P = 1|H}") < PUCS,u < 076@; > 0}|HY) + PUC S0 < 0,@2@ > 0} HyY)

+P({CS,1 > 0,08, < O}|HJ?) + P({CS,, > 0,08, < O} HY7). (C.4)
Consider the first term on the right-hand side of Equation (C.4). We have,
P({CS,u < 0,08, , > 0}|H}") < min{P({C8,u < 0}|Hj7). B(C5,, > 0}|Hj7)}. (C.5)
If Hg’j, is such that 9, > 0 and (5; > 0, then,

min{P({CS,; < 0}/ Hi’), P(CS, ; > 0}|H{¥)} < P{CS,u < 0}|5, > 0,51 > 0)
<P({CS,y < 0}|5, = 0) = P({5, < —,}|6, =0) =& (C.6)

where the first equality hold trivially, the first inequality and second equality are by the prop-
erties of the confidence interval @p.

Similarly, if Hg’jl is such that 9, < 0 and 5(} < 0, then,

min{P({CS, 1 < 0}]d, < 0,6 < 0),B(CS,, > 0}|H{¥)} < P{CS, ; > 0}[5, < 0,6 < 0)
< P({CS, > 0}|5L = 0) = P({8, > e}|6L = 0) = &. (C.7)

Therefore, we can conclude that the first right-hand side term of Equation (C.4) satisfies
— ——1 . -
P({CSpu <0,CS, [ >0} Hj”) < a.
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Applying the same derivations to the remaining three right-hand side terms, we can conclude

that

P(¢h = 1|H') < 46 = a.

We summarize the procedure below.

Algorithm C.1 Finte Sample Test.

1.

Let J be the number of judges and a be the prechosen significance level. Set & = J(?Oil)
and & = 7.
For each judge j, calculate 5 — pj, and 5d = qJ (j;l,, where (f)j,cj?) are sample

frequency estimators for (p;, qj).

Let B be a large integer (can be millions). For each b= 1,2,--- | B, draw two independent
random samples of Bernoulli(0.5) random variables, each with sample size n*. Calculate
Ay as the difference of the average of the two samples for iteration b. Let ¢ be the smallest

point from {—1, ":1,-~-,—L0 L ---,”_1 1} such that % Zlel{Ab>é})§é~2.

n* Y pFo

(‘3>

Set ¢, = ¢ é

»-DO

Calculate the confidence sets according to Equations (C.2) and (C.3).

For a given pair (j,5'), set 77" = 1 if any of the following events happen: {6’§pr <
——1 — —0 — 1 — —1
0,08, >0},{CS,uv <0,08,, >0}, {CS, 1 >0,08,; <0},{CS, 1 >0,C8,; <0}

Reject the null hypothesis if ¢ =1 for at least one pair (7,4")-

We report the rejection probability of the finite sample for the design in Section 4.1.2, where

we set 03 = —0.5. We can see that the power is lower than the asymptotic test that we reported

in Table 1, particularly when the violation is relatively mild. This is not surprising because the

asymptotic test is based on the assumption that the propensity score is consistently estimated,

and therefore, we can consistently estimate the ranking of the propensity score. In contrast, for

the finite sample test, the ranking of the propensity score is unknown. Another loss of power

is that we only consider one type of interval that 1{Y > 0.5} here, whereas the asymptotic

test considers all possible intervals of the form 1{y <Y < y’}. However, we still observe that

for each given sample size, the rejection frequencies increase as the magnitude of the violation

increases, as well as with the number of cases per judge.
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Figure 8: Finite Sample Test Results

To conclude this section, we want to emphasize that while there is a potential loss of power
for our test, we trade this off for a substantial computational advantage. As discussed in Frand-
sen, Lefgren, and Leslie (2023, Supplementary material, page 9), implementing a finite sample
test can be quite computationally challenging when involving large-dimensional nonlinear op-

15

timization. On the contrary, our test requires little more than drawing Bernoulli random

numbers and is very easy to implement. It thus serves as a useful complement to the existing

literature.

D Lemmas and Intermediary Results

D.1 Lemmas for the proof of Theorem 2

This section collects useful Lemmas, intermediary results, and additional assumptions for estab-

lishing the asymptotic results in Theorem 2.

I5For this reason, we do not offer a simulation comparison with FLL’s finite sample test, for which FLL
does not provide a complete simulation study either.
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Lemma D.1 Suppose Assumptions B.2 and B.3 are satisfied, then uniformly in £ € L,

\/’FL(Thl (y7 Tyapa Tp7 9) —my (y7 Ty’p7 rpu 90))

ngbmh yvryaparp700)+0p(1)
=1

T Z mi; y,Tyapan>90) ml(y7 Ty, Py Tp, 00) + veml(ya Ty, Py Tp, 00) : S(Di> Zia 90)) + Op(l)'

(D.1)

~

\/E(m()(ya Ty;p; rp: 6) - mO(y7 ry7p7 rpa 90))

1>
:% Z (Zsmmi(ya Ty P> Tp, 00) + Op(l)
=1

1 n
E% Z (mﬂ,i(y7 Ty, Dy Tp, 90) - mO(ya Ty, D, Tp, 00) + VGmO(ya Ty, D, Tp, 60) : S(Div Zia 00)) + Op(l)a
i=1

(D.2)

\/ﬁ(w(pa Tp, é) - w(p¢ Tp, 00))

M=

<= 5l
1=

¢w 2(pa Tp, 90) + Op(l)
1

7

(w’b(p7 Tpv 00) - w(parpa 00) + V@’w(]% Tp? 00) ) S(Di7 Zi7 00)) + Op(l) (Dg)
1

3

where functions mq and w are defined in Equations (A.2) to (A.4) and

mii (Y, my, 0, 1p, 0) = Dil(y <Y <y+ry)1(p < P(Z;,0) < p+rp),
moi(y,ry,p, Tpae) = (Dz - 1)1(3/ <Y, <y+ T‘y)l(p < P(Ziyg) <p+ Tp),
wi(p,rp,0) = 1(p < P(Z;,0) < p+r1p).

Proof. Let fp(p) denote the density function of P(Z;0y). Following Hsu and Lieli (2021), we

calculate the derivatives for mq(y,ry,p,rp,-) and w(p,ry,-) as:

Veml(yﬂ”y,]?, rpaQO) = ]E[Dl(y < Y < Y+ Ty)|P(Z7 90) = p] . fP(p)E[VGP(Zv GO)IP(Za 00) = p]
—E[DI(y <Y <y+ry)|P(Z,00) =p+rp]- fr(p+1p)E[VeP(Z,00)|P(Z,00) = p+ 1],
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Vomo(y, 1y, P, Tp, 00) = E[(D-1)1(y <Y < y+ry)|P(Z,00) = pl-fr(p)E[VeP(Z,00)|P(Z, 00) = p]
—E[(D-Dl(y <Y <y+1y)|P(Z,00) =p+rp] fr(p+rp)E[VeP(Z,00)|P(Z,00) = p+ 1],

Vow(p, rp, b0) = fP(P)E[VeP(Z,00)|P(Z, 00) = pl—fr(p+rp)E[VeP(Z,00)|P(Z,00) = p+ryp)]-

Now we prove Equation (D.1), the results for Equations (D.2) and (D.3) are similar. Note
that

\/’E(ml(gﬁ Tyvpa Tp, é) - ml(ya ryapa Tp, 90))

:\/ﬁ(ml(y7ry7p7rp79) - ml(yaryapa rpa é)) + \/E(ml(y7ry7p7rp7 é) - ml(y7ry7p7 Tpv 90))
:\/ﬁ(ml(y7 Tyapa ’rp7 é) - ml(% ryapa Tp) é)) + veml(yv rnyy Tpv 90)/\/ﬁ(é - 90) + 0(\/5"@ - 90”)

A~ ~

A 1 ¢
:\/ﬁ(ml(y77ay7p7rp79> - ml(?/ﬂ"yap; /rpa 9)) + % Z veml(yerﬁp? Tpv 00>3<Di7 Z’iv 00) + 0p<1)
i=1
(D.4)

where the second equality holds because my(¢,0) is continuously differentiable in 6 under As-
sumption B.2-(2), and the third equality is due to Assumption B.3.

Let Gml(Q,E) = vn(m(y,ry,p,rp, 0) — mi(y,ry,p,1p,0)), 0 € ©,0 € L. It remains to show
that supye £ |Gy (0,€) — Gy (60, £)] = 0p(1).

By Assumption B.2-(ii), the class of functions {1(p < P(Z,0) < p+1p) : 0 € O,p €
[0,1],r, € [0,1]} is a Vapnik-Chervonenkis (VC) class of function. Therefore, the class of
functions {1{y <Y <y+ry} x1(p < P(Z,0) : 0 € ©,p € [0,1],r, € [0,1],r, € [0,1]} is also
VC class. Hence, the process Gml is stochastically equicontinuous with respect to (6,¢). Note
0 L 0y, then there exist 6, | 0 such that with probability approaching one, (é, 0) € B((6o,¢),0),
where B((00,£),0r) is a ball in © x L centered at (0y, ) with radius 6,,. Therefore,

~ A~

31112 ‘\/ﬁ(ml(yaryapv Tpv 9) - ml(y7 7ay7p7 Tpa 9)) - \/ﬁ(m1<y7ry7p7 Tpv 00) - ml(y7ry7p7 7ap7 90))’
€
=5up |Gy (8,€) — Gy (60, 0)]
lel
< sup sup Gy (0, 4') — Gy (60, 0)| = 0,(1). (D.5)

0o€OLEL (0" ,£')eB((00,£),6n)

where the last equality is by the stochastic equicontinuity of the process Gml. Combine both

Equations (D.4) and (D.5), the result then follows. O
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Lemma D.2 Suppose Assumptions 2.1 to 2.4, B.2 and B.3 are satisfied, then uniform in £,

n

\/ﬁ(ﬁl(yﬂﬂyaplap%?ﬂpvg) (yaryaplvp%rpveo Z V1,8 y>ry7p17p2>rpa00)+0p(1)

(D.6)

X 1 ¢
\/E(VO(y7ryvp17p27rpu 9) - VO(yvryap17p27rp790)) = % Z ¢V0,i(y7ryap17p27rpa 00) + Op(]-)7
i=1

(D.7)

¢V1, ( Ty7p17p27 rpa 00) — w(plarpv 00) (Zsml,i(yaryap?v Tp7 90) + ml(y7 74:1/7])277']77 00) . (st,i(pla rpa 90)
w(p Tp, 00) . ¢m1,i(y7 Ty, P1,Tp, 00) - ml(y7 Ty, P15 Tp, 00) : ¢w,i(p27 Tp, 90)7

¢I/0, Y, Ty, P1,P2,,Tp, 00) - w(plyrpa 00) ¢MQ,i(yaTy7p25 Tp, 90) + mO(y7Ty7p27rpa 00) : ¢w,’i(plvrpa 90)
(

— w(p2,7p, 00) - Ormg.i(Ys Ty D1, Tp, 00) — Mo (Y, Ty, P15 Tps 00) - Dw,i (P2, 7p, 00)-

Furthermore,

o~ o~

\/ﬁ(’//\l(79) - Vl('aHO)) = (1)1/1(')7 \/5(60(79) - VO('aQO)) = (I)l/o('>7

where ®,, () and ®,,(-) are Gaussian processes with variance-covariance kernel generated by

Gy (+,60) and ¢y, (-, 00), respectively.
Proof. We show Equation (D.6). Equation (D.7) holds analogously. Recall

l)l(€> = ml(y7ry7p27rp7é> : w(plarp7é) - ml(y7ry7p17rp7é) : w(p27rp7é)

To save space, for generic £, we write 11 (0) = 1 (£,0) and w(0) = w(¢,0). Similarly, mi(0y) =
m1(£,00) and w(by) = w(¥,0y). Then,

i (0)(0)—ma (o) w(Bo) = (11 (B) — m1(Bo) + mi(60))(W(0) — w(Bo) + w (o)) — ma(Bo)w(Bo)

= (11 (0) — ma(6o))w(Bo) + (@(B) — w(6o))m1(6o) + (111 (B) — m1(00))(W(0) — w(bo))

=(11(6) — m1 (80))w(8o) + ((8) — w(80))ma(6o) + o, (ja) |

where the last equality is because 1h1(0) — mi(6o) = Op(1/v/n) and w(h) — w(fy) = O,(1/y/n)
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by Lemma D.1. Then we have

~

ﬁl(g) - Vl(g) :w(plurlha()) : (ml(ya Ty7p2)rp70) - ml(ya TyaPQ,TpaOO))
+ ml(y7ry7p27rp790) : (w<p17rp7é) - w(Plﬂ“pyeO))

- w(anrpag(J) : (ml(yvryaphrpvé) - ml(y7ryap17rpa00))

A~

N 1
- ml(y77ay7p17rp790) : (w<p27rp79) - w(p2771p760)) + Op () :

NG

Equation (D.6) then follows by inserting Equations (D.1) to (D.3) to the above equation.
Finally, under Assumption B.2, each element of Vgmi(y,ry,p,7p,60) is Lipschitz contin-
wous in y, Ty, p, rp and it implies that {dm(y,ry,p,1p,00)/00; 1 (y,ry,p, 1) € [0,1]1} is a
VC class of functions for each j. Similarly, each element of Vow(p,rp,0o) is Lipschitz contin-
wous in p, rp. It follows that {dm, (Y, 7y, D, 7p,00) : (Y, 74,0, 7p) € [0, 14}, {dmg (Y, 7y Dy 7, 00)
(y, 7y, 0,7p) € [0,1*} and {pw(p,7p, 00) : (p,7p) € [0,1]?} are all VC classes of functions. weak
convergence follows from the fact that {¢y, (Y, Ty, D1, D25 Tp, 00) : (Y, 7y, P1,D2,7p) € [0,1]°} and
{buo (Y Ty D1, D25 s Ty 00) © (Y, 7y D1, D2, 7p) € [0,1]°} are both VC classes of functions. Therefore,

we have

o~ ~

\/ﬁ(ﬁl(ae) - Vl('790)) = (I)I/l(')a \/E(I//\O(’H) - 1/0(',00)) = q)lfo(')'

O

Lemma D.3 Suppose Assumptions 2.1 to 2.4, B.2, B.3 and B.5 are satisfied, then uniform in
£ over L,

f( i;(yary)pl pZanvéb) - ﬁl(yvryap17p27rp50))

3

T Z - 1)¢V1 Z(yvryapbp%rpa 00) + Op( ) (DS)
\/’E(ﬁg(ya Ty, P1,P2,Tp, Hb) - ﬁO(yaryvplap%rpa 0))

Z Cbuo, y>ryap1>p27rp700) +0p(1) (D.Q)

where ¢y, i (Y, Ty, D1, P2, Tp, 00) and Guy (Y, 7y, P1,D2,,Tp, 00) are the same as in Lemma D.2.
The proof to Lemma D.3 is similar to Lemma D.2 and is therefore omitted.

Lemma D.4 Suppose Assumptions 2.1 to 2.4, B.2, B.3 and B.5 are satisfied, then O'd( ) defined
in (3.6) satisfies that for d = 0,1, sup, |62(€) — o2(£)| = 0p(1).
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Proof. Recall that for a given £ € L,

(D.10
We first consider the second term on the right-hand side of Equation (D.10). Let W; =

~—

% Zle Wib, Using Lemma D.3, we know that for a given b = 1,2,---, B, and uniformly over
le L,

n

P4(0) ~ 9a(0) = S P = Dall. o) + 0,(1).

i=1
So it can be written as
n< —
5 2 (74(0) = 2a(0)) (2a(t) — 25(0))
b=1
11 B n , n ~
=5 SO W = 1)ugi(€,600)) (D (Wi = 1)hugi(€, 60)) + 0p(1)
b=1 i=1 i=1
11 S, 11 S
L LSS (Wi D66 00) - S0 S WP 1) — 16 00)u (£ 60) + 0(1)
b=1 i=1 b=1 1;&]
11 B n 11 B B n
= SO 176, (6 00) + g D0 S0 S W WY — 1), (0. 60)
b=1 i=1 b=1 b/ #£b i=1

The first right-hand side term is of order % and is negligible as B — oo. The second term on
the right-hand side is negligible because E[(W? — 1)(WY — 1)|(Y, D, Z)] = 0 as long as b # V.
The third term on the right-hand side is negligible because E[(W} — 1)(WJI-’ -H|(Y,D,Z)] =0
as long as i # j. For similarly reasoning, the third right-hand side term of Equation (D.10) is

also negligible as B — oo.
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Now consider the first term on the right-hand side of Equation (D.10). Uniformly over ¢,

B B
3 hO 500 = 5 (S 160t 00)* 0,01

b=1 b=1 =1
11 B n B n
=52 > (W) = 1)%6],(¢,60) + —7222 (W} = 1)buyi(E: 00) b€, 60) + 0p(1).
b=1 i=1 b=1 i=1 j#i

Conditioning on the sample, because VVZ-b are i.i.d. across b and i, has expectation and variance

equal to one, we know E[(W? — 1)(W]l-’ —D|(Y,D,2)] =0 and E[(W} —1)?|(Y,D,Z)] = 1. As
B — o0, the right-hand side converges in probability (with respect to the distribution of{Wb}szl)

IS, gﬁyd (0,00) + 0p(1), which in turn converges to o%(¢) uniformly over £ asn — oco. O

D.2 The influence function with covariate case

In this subsection, we derive the influence function for estimating v4(¢) in the presence of co-

variates. First, we estimate 6y = (6, 0p,) by MLE,

b= rgmaxleogf (Y, Ds, Zi, Xi,6)

g0 N
= argmax — Z Dilog P(Z;, X;,0) + (1 — D;)log(1 — P(Z;, X;,0)). (D.11)
gce M

where P(z,z,0) is parameterized and depends on (z,z) and 6 = (6.,6,)" through 2'0, + 2'0,.

For example, P(z,z,0) = ®(2'0, + 2'6,,) for Probit or P(z,z,0) = % for Logit.

As in Appendix D.1, we make the following assumptions.

Assumption D.1 Assuming following conditions hold

1. The conditional density of (Y, X, D) given P(Z, X,0) = p, denoted by fy x p|p(y,,d|p),
is Lipschitz continuous in (y,xz,p) over the joint support of (Y, X, P) ford =0, 1.

2. Forall z € Z and x € X, P(z,x,0) is continuously differentiable in 6 at 6y with bounded

derivatives.
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Assumption D.2 The estimator g, Bl, BO admits an influence function of the following form,

V(0 —6y) = f2890 Di, Zi, X;,00) + 0,(1), (D.12)
V(B — 1) = WZ% (D3, Yi, Zi, Xi, B1) + 0p(1), (D.13)
\f(ﬁﬂ - 50 \F ZSBO D;, Y, ZZvXZvﬁO) + Op(l) (D'14)

where sq,(-), sg,(-) and s, (-) are measurable, satisfying E[sg,(D;, Z;, Xs,00)] = 0,E[sg, (D, Ys, Zi, Xi, 51)] =
07 E[Sﬁo(Dia}/iaz’iaX’iaﬁO)] = 07 E[Sup9 ||890(Dia Zi79)||2+5] < 00, E[Supﬁ ||351 (Dia}/ivziaX’iaﬁ)”Q—i_(s] <
o0, and E[supg ||s§0(Di,Yi,Zi,Xi,ﬂ)HH‘S] < 0o for some § > 0.

Note that under similar conditions as in Section 4 of Hsu, Liao and Lin (2022, Economet-

ric Reviews), (D.13) and (D.14) would hold. We define the following quantities for generic
(y7 Ty, Dy Tp, b, ‘9):

my(y,ry,p,rp,0,0) =E[D1(y <Y — X'b<y+ ry)1(p < P(Z,X,0) <p-+r1p)l, (D.15)
mo(Y, Ty, Dy 7, 0,0) =E[(D — D)1y <Y = X'b<y+7r,)1l(p < P(Z,X,0) <p+1,)], (D.16)
w(p,rp,0) =E[l(p < P(Z,X,0) <p+rp)l (D.17)

Let fp(p) denote the density function of P(Z, X,6y) = P(D = 1|X, Z;0y). Following the cal-
culation in Hsu and Lieli (2021), we can analogously obtain the derivatives with respect to 6,

evaluating at the true parameter values (81, 5o, 0o) as

Vomi(y,ry, P, p, B1,00)

=E[Dl(y <Y — X'B1 <y +1,)|P(Z,X,00) = p] - fr()E[VeP(Z, X, 00)|P(Z, X, 00) = p]
—EDLy <Y — X'B1 <y+1y)|P(Z,X,00) =p+1p] - fr(p + 1)E[VeP(Z, X, 00)|P(Z, X, 00) = p+1p),
Vomo(y, Ty, p; Tp, Bo 0o)

=E[(D - DUy <Y = X'By <y +1y)|P(Z,X,00) = p| - fr(p)E[VeP(Z, X,00)|P(Z, X, 00) = p|
—E[(D -1y <Y — X'Bo <y +1y)|P(Z,X,00) =p+1p] - fr(p+1p)E[VeP(Z, X,00)|P(Z, X,00) = p +1p]
Vow(p, p, bo)

=fpr(P)E[VoP(Z, X,00)|P(Z,X,00) = p] — fr(p+ 1p)E[VeP(Z, X, 00)|P(Z, X, 00) = p+ rp).

In addition, let f,,|.-a(y|2, 7, d) denote the conditional density of Uy conditional on (Z, X, D) =
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(z,x,d), then the derivatives with respect to 3, evaluating at the true parameter values (31, 5o, 0o)

are

vﬂml(yﬂ"y»p, Tpaﬁlvg(])
:E[P(Z, X, 90)(fu1\zmd(y —I—Ty|Z, X, 1) B fu1|Z$d(y’Z7X7 1)X ) 1(]) < P(Z, X, 0) < p+7'p)]]7

V,Bmo(y,’ry,p, Tpvﬁ()ae(])
:]E[(l - P(Za Xa 00))(fuo|zzd(y + Ty’27 Xv 0) - fuo\zatd(y|Z, X,O)X : 1(]7 < P(Z, X, 9) < D+ Tp)]]'

Let the estimators for my(y, ry,p,rp, 5,0), mo(y, ry,p,7p, 8,0) and w(p,rp,d) be
1 n
ml(y7 Tys Py Tpy ﬁv 0) = 5 Zl ml,i(y7 Ty, D, Tp, 67 9)7
1=

. 1¢
mO(yvryapa Tpvﬁae) = Ezmo,i(ya Tyvpvrpaﬁ) 9)5
i=1

. 1 ¢
w(p7rp79) = E ;wl(pa rpae)'
where
ml,i(y7ryapa Tp7ﬂ70) - Dll(y S }/Z - X’LB S Yy +Ty)1(p S P(ZMXHG) S p+ Tp)a
mO,i(yaryvpa rp>679) = (1 - D’L)l(y S YtL - XZB S ) + T‘y)l(p S P(Zthve) g p+ rp)v

wi(p,rp,0) = 1(p < P(Z;, Xi,0) < p+rp),
and

\/ﬁ(m1<y7ry7pvrp7517é) - ml(y774y7p7rp7/81700))
1 n
:% Zml,i(y)ry7p7rp)ﬂlu 00) - ml(y7ry7p7 prBl)eO) + v9ml(y)ry7parp7/817 00) . S(Diy Zi7 Xi7 90)
i=1
+ vﬁml(y)ry7p7rp)ﬂla 00) : 851 (Di7}/i) ZiaXinl) + Op(l)

1 n
E% Z ¢m1,i(?/, Ty, D Tp,s ﬂla 00) + Op(l)’
=1
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A~

\/ﬁ(m(](y77ay7p7 rp')BOue) - mO(y7ry7p7rp750700))
1 n
:ﬁ Zmo,i(y7Ty7p7rp7/807 00) - mO(yaryapa TpHBO?HO) + maO(y7ry7p7Tp7/807 90) : S(Di7 Ziinv 00)
i=1
+ vﬁmO(y7Ty7p7rp7/807 00) : SﬁO(DhK? Zi7Xi7BO) + Op(l)

\/» Z ¢mo, Y, Ty, D, T'p, 90) + Op(l)

3

\/ﬁ(ﬁ)(p, Tp, é) - w(p, Tp, 90))
1

<- 5
R

wz(p) Tpv 00) - w(pvrp700) + vew(p) Tpu 00) : S(Di) Ziina 60) + Op(l)

s
I
—

wa,i(pa Tp, 90) + Op(l)'

s
Il
A

By Assumption D.1, all elements of Vgm1(y, 7y, 0, 7p, B1,60), Vami(y, 7y, 0, 7p, B1,00), Vomo(y, Ty, P, 7p, Bo, bo),
and Vgmo(y, 7y, D, p, Bo,00), are Lipschitz continuous in y, ry, p, 7, and each element of
Vow(p, 1p, 8o) is Lipschitz continuous in p, 7. It follows that {¢m, (v, ry, p, 7p, £100) = (Y, ry, P, 7p) €
[0, 11"}, {mo (4. 7y, 2,79, Bo. O0) = (y, 7y, 0, 7p) € [0,1]*} and {$u(p,7p,60) ¢ (p.7p) € [0,1]7} are

all VC classes of functions. Finally, let

141 Ty7p17p27rp)51700) ml(y7ry7p27rp761700) 'w(plvrp)a()) _ml(ya Ty7p1’7'p751790) ’w(p2>7‘p790)7

1\Y, Tyaplvp%rpvﬁla ) ml(ya ry7p27rp75179) : w(plvrp79) - ml(yvryaplvrp7ﬂla0) ' w(p%rpae))

A

(y

vo(Ys Tys P15 P2, Ty B1, Bo, 00) = mo (Y, Ty, P2, 7, Bos 0o) - w(p1,mp, 00) — mo (Y, 7y, P15 7p, Bos 00) - w(p2,7p, 00),
(
o(y

0 Ty7p17p27rp)507 ) 0(y7ry7p2)rp7307é) . ﬁ)(plarlhé) - mO(y7Ty7p17Tp7507é) : w(p27rpué)'

Lemma D.5 Suppose Assumptions 2.1 to 2.4, 3.8, D.1 and D.2 are satisfied, then,

\/ﬁ(ﬁl(yvryaplvp27rpaglv ) (yvryap17p27rp561790 \/*qul/h yaryypl p257‘p7/81790)+0p( )

(D.18)

~

. - 1 O
\/H(VO(yﬂayaplvaﬂapa ﬁ()? 0) - VO(y7ry7p17p27Tp7 507 00)) = ﬁ Z(Z)V()J(ya ry7p17p27 rprO?eO) + Op(l)a
i=1
(D.19)
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where

¢I/1,i(y7ry7pl7p27prBl)eO)
:’U)(pl, rp7 90) ' ¢m1,i(y,7ay7p277'p, 617 00) + ml(y7ry7p27rp7517 90) . (bw,i(plu /r.p7 60)
- w(an Tp, 00) ’ qul,i(yaryvplarpvﬂla 00) + ml(yaryvplarp7ﬂlv 00) : gbw,i(p?, Tp, 00)7

¢I/0,i(y7ry7pl7p25prBO)eO)
:w(plu rp7 90) : ¢m0,i(yary7p27rp7 607 00) + mo(y7ry7p27rp7507 90) . (bw,i(plu rp7 60)

- w(an Tp, 00) : ¢m0,i(y>ry7p177“p7507 00) + mO(yaryvplarp7607 00) . gbw,i(p?, Tp, 00)

The proofs are similar to those in Appendix D.1, so we omit the details.

E Additional Empirical Results

Table 4: FLL Semi-parametric test, B-Spline

2 Knots 3 Knots 4 Knots 5 Knots
ps Ps combined | pj Ps combined | pj Ps combined | ps Ds combined
All 0.13 1.00 0.25 0.06 1.00 0.11 0.02 1.00 0.04 na 1.00 1.00
Aggressive Assault 0.02 1.00 0.04 0.01 0.91 0.02 0.00 0.96 0.00 na 1.00 1.00
Robbery 0.13 0.73 0.25 0.06 0.99 0.11 0.02 0.44 0.04 na 0.45 0.90
Drug Sale 0.18 0.83 0.36 0.09 0.33 0.18 0.03 0.55 0.06 na 0.73 1.00
Drug Possession 0.45 0.82 0.89 0.31 1.00 0.61 0.14 0.99 0.27 na 0.98 1.00
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